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Abstract. Computational grids are environment that provides the ability to
exploit diverse, geographically distributed resources. Bulk Synchronous Parallel
(BSP) model is a widely used parallel programming model. With rapid
development of grid technologies, users need a new environment that can run
parallel programs on computational grids. We present here a new
implementation of BSP, which is called BSP-G. It constructs a parallel
programming environment on computational grids. In our BSP-G environment,
users can develop parallel programs with using BSP model and run them on
grid. Our BSP-G library uses services provided by the Globus Toolkit for
authentication, authorization, resource allocation, executable staging, and I/O,
as well as for process creation, monitoring, and control.

1   Introduction

There are many different parallel programming environment available today for a
variety of parallel architectures and models. Examples include PVM [22], MPI [23]
and BSP [1, 3, 4]. They are widely used in scientific computational field for their
respective characteristics. The BSP, Bulk Synchronous Parallel, has advantages
relative to others such as prediction of performance and avoidance of deadlock.

Computational Grid [10], which focuses on large-scale resources sharing, provides
protocols and tools to construct an integrated virtual supercomputer that is
geographically distributed on different sites.

Our BSP-G is an implementation of BSPlib, which is based on the well-known grid
middleware Globus Toolkit [11] that is developed by Globus project. It provides a
programming library for portability of parallel programs.

In this paper, we propose a strategy for designing the BSP-G and some details of
implementation. The rest of the paper is organized as following. In the next two
sections, we briefly review the grid computing technologies and BSP model. In the
subsequent sections, we first outline the BSP-G model. Then describe the some
details about the design and implementation of BSP-G. Results of performance are
presented in section 7. We conclude with a discussion of some future directions in
Section 8.
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2   Grid Computing

The term “Grid” denotes a proposed distributed computing infrastructure for
advanced science and engineering. The goal of the Grid is to construct a Virtual
Organization (VO) that can share various resources. A layered Grid architecture was
proposed to identify fundamental system components, specifying the purpose and
functions of these components [9].

Globus Toolkit is a collection of software components designed to implement the
protocols of Grid architecture. The detailed description of these components can be
seen in [12, 25]. A lot of Grid services are used to construct the BSP-G architecture.
Open Grid Service Architecture (OGSA) [25] will be a new core infrastructure of
grid. It provides a grid service in order to make grid environment transparent to grid
application developers.

     Fig. 1. Superstep of BSP program             Fig. 2. BSP-G Architecture

3   BSP Model

The Bulk Synchronous Parallel (BSP) model is a generalization of the widely
researched PRAM model and was initially proposed by G. Valiant as a Bridging
Model for Parallel Computation [1, 2]. Much work on BSP algorithms, architectures
and languages has demonstrated convincingly that BSP provides a robust model for
parallel computation, which offers the prospect of both scalable parallel performance
and architecture independent parallel software [24].

BSP programs have both a horizontal structure and a vertical structure. The
horizontal structure arises from concurrency, and consists of a fixed number of virtual
processes. These processes are not regarded as having a particular linear order, and
may be mapped to processors in any way.

As Fig. 1 shows, the vertical structure arises from the progress of a computation
through time. For BSP programs, this is a sequential composition of global superstep,
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which conceptually occupies the full width of the executing architecture. Each
superstep consists of three phases as following:

Computation in each processor, using only locally held values;
Global message transmission from each processor to any set of the others;
Barrier synchronization.
Each end of barrier synchronization is the start of next superstep. It iterates during

the execution of BSP program.
A heterogeneous Bulk Synchronous Parallel (HBSP)[19] model is a generalization

of the BSP model [2] of parallel computation. HBSP provides parameters that allow
the user to tailor the model to the required system. As a result, HBSP can guide the
development of applications of traditional parallel systems, heterogeneous clusters,
the Internet, and the computational Grid [17].

4   Previous and Related Works

4.1   Other Implementations of BSP

Oxford Parallel is building a BSP Programming Environment which includes
implementations of the internationally agreed standards for BSP primitive functions
[4] for a wide range of parallel machines together with parallel performance profilers
& analyzers, support for debugging parallel programs and benchmarking tools.

The Oxford BSP library, which is developed by Miller, was the first BSP library
[3, 4]. It contains basic functions, supporting both BSMP (Bulk Synchronous
Message Passing) operations and DRMA (Direct Remote Memory Access)
operations. It also supports a lot of architectures and communications devices. In the
new version, implementations of BSPlib enable a homogeneous cluster of
workstations to be used as a parallel machine.  But it cannot adapt to the Grid
computing environment.

PUB (the Paderborn University BSP) library [14] is a comprehensive and high
performance one. It presents a BSP object concept. It supports the use of threads and
provides rich thread functions, but one single BSP object and its subgroup must be
used in a same thread, thus may not be easy for a user to program in such a way.
Though it provides the process migration mechanism, the migration capability cannot
be make full use because of too many limitations [20].

SHUBSP [15] is a BSP library that is designed to improve the computing
performance of SMP cluster by Shanghai University BSP research group. It can
automatically create the suitable threads rather than processes in the same SMP node
when running a BSP program. Because a thread possesses fewer resources than a
process, and the communication between threads is more effective than
communication between processes through sockets, SHUBSP can achieve high
performance in SMP cluster.

xBSP [5], is a implementation of BSP programming library for VIA (Virtual
Interface Architecture)[21].  xBSP demonstrates that BSPlib is more appropriate than
MPI to exploit the features of VIA. This library can also achieved similar application
performance to the native performance from VIPL (the Virtual Interface Provider
Layer, an interface provided by VIA), by reducing the overheads associated with
multithreading, memory registration, and flow-control.
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4.2   MPICH-G

MPICH-G2 [6] is a second-generation version of earlier MPICH-G, which is a Grid-
enabled implementation of MPI. It allows users to run MPI programs across grid
nodes, which is at the same or different sites; use the same commands as that used on
a parallel computer. It extends MPICH-G by incorporating faster communications and
quality of service.

5   Motivation of BSP-G Model

All the BSP implementations forenamed in Section 3.1 focus on the performance of
the BSP for specified device or platform. The heterogeneous and distributed
computing capability is not addressed. But the development of requirement for
computing resources in the science and engineering field are seeking this capability.
The wide applications of MPICH-G2 have proved this opinion. On the other hand, the
advantages of BSP model and portability of existing BSP programs lead us to develop
the BSP-G.

Globus toolkit provides lots of core interfaces and services, which intend to
construct higher-level policy components. Even though the Globus toolkit provides
tremendous APIs or SDKs for programmer to develop applications directly, it is still
necessary to build parallel programming libraries on grid. BSP has, compared with
various other parallel programming environments such as PVM and MPI, two major
advantages:

Most message-passing libraries, such as PVM and MPI, are based on pairwise
send-receive operations, which are likely to cause deadlocks. Deadlocks do not occur
in a BSP program, which is partitioned into phases or supersteps, because explicit
send and receive operations are no longer necessary.

BSP program’s correctness and time complexity of the program can be predicted
while others cannot.

The sharing requirement for grid computational resources and the advantages of
BSP model motivates use to develop grid-enabled BSP library. Our new
implementation of BSPlib for grid is called grid-enabled BSP (BSP-G). To the best of
our knowledge, BSP-G is the first implementation of BSPlib for grid.

Our BSP-G utilizes Globus Toolkit services to support efficient and transparent
execution in heterogeneous grid environments. As Fig. 2 shows, BSP-G first uses
DUROC (Dynamically-Updated Request Online Coallocator) [7], which is a
component of grid services, to specify where to create processes of a BSP program.
The following steps, include authentication, resources allocation and startup, are
based on many grid services such as GRAM (Grid Resource Allocation Manager)
[13], MDS (Metacomputing Directory Service) [26, 27], GASS (Global Access to
Secondary Storage) [28], GSI (Grid Security Infrastructure) [29], Globus-IO [30].
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6   Implementation of BSP-G

6.1   User Interface

It’s necessary for users to create the suitable Grid computational environment before
startup of a BSP program. It includes client, server, SDK bundles of the three Globus
Toolkit 2.0 components. User should obtain a user certificate through grid-cert-
request command, and run grid-proxy-init command to authenticate the user to each
remote site.

Before using bsprun to run a BSP program, BSP-G needs a host file, which
includes name of computational nodes. Unlike other implementation such as Oxford
BSPlib, the nodes listed in the host file do not mean the exact execution nodes, but
just specify all nodes, which can be exploited.

When a user wants to execute a program via bsprun, the number of computational
nodes should be specified through –p parameter. In nonpure SPMD mode, the bsprun
shell script will enquire the load of all the computational nodes via MDS (Monitor
and Discovery Service). The computational resource whose workload is lightest will
be written in the Resource Specification Language (RSL) file [16]. The environment
variable MASTERPROCESS will also be written in the RSL file. Then bsprun will
execute the globusrun to submit the master process. When the master process calls
bsp_begin(); the number of processes will be specified. The computation nodes,
which have the lightest workload, will be selected. The remaining process will be
started via a co-allocation library distributed with the Globus Toolkit, the DUROC [7]
control library.

The DUROC library itself uses GRAM [13] API and protocol to start and
subsequently manage a set of subcomputations, one for each site. For each
subcomputation, DUROC generates a GRAM request to a remote GRAM server who
authenticates the user, performs local authorization, and then interacts with local
scheduler to initiate the computation.

When user specifies the GRAM RSL parameters executable with GASS URL
variable $(GLOBUSRUN_GASS_URL), and run globusrun with –s parameter,
GRAM will use GASS to stage executables from remote locations (indicated by
URLs). In the same way, when user specifies the parameters directory, stderr, stdout
with a GASS URL. GASS is also used, once an application has started, to direct
standard output and error (stdout and stderr) stream to the user’s terminal, and to
provide access to file regardless of location. This masks essentially all aspects of
geographical distribution except those associated with performance.

6.2   Creation of Communication Channels

In this section, we will discuss the communication between processes. Every process
obtains a port using function call globus_io_tcp_create_listener(). The port and
hostname will be exchanged in all the processes. After having got the port and
hostname, every process will create nprocs-1 communication handles or to control the
status of all subjobs. Every process listens and accepts any process whose pid is
smaller; connects any process whose pid is larger than itself. When a process listens
the handle as server, it does not know from which client the connection comes. So
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when the connection is created, the client first sends its pid to server. Then server
judges the client from the first message it received. The following shows the pseudo
code of the creation of communication channels.

for(pid=0;pid<nprocs;pid++){
if(pid<mypid){
globus_io_tcp_listen(&listener_handle);
globus_io_tcp_accept(&listener_handle, &attr,
&conn_handle);

globus_io_read(&conn_handle, (globus_byte_t
*)&recvbuf, nbytes, nbytes, &nbytes_read);

position=recvbuf;
}
else if(pid>mypid){
globus_io_tcp_connect(host_port_array[pid].hostname,
host_port_array[pid].port, &attr, &conn_handle);

globus_io_write(&conn_handle, (globus_byte_t *)&mypid,
nbytes, &nbytes_written);

position=pid;
}
handle_array[position].bsp_pid=position;
handle_array[position].handle=conn_handle;

}

6.3   Barrier Synchronization of a Superstep

In a Direct Remote Memory Access (DRMA) mode, the memory block should be
registered via bsp_push_reg function before operation. Users should create a map
relation for the same variable in different processes. BSP-G uses a register table to
record the relation. The same variable in the different processes have the same ID. In
an operation of DRMA, the ID will be integrated in the message and will be sent to
the corresponding process by the bsp_syc(). The peer of DRMA can find the actual
local address according to the ID.

Processes are partitioned into several independent subsets – subgroups. The
advantages of introducing subgroup can be seen in [14]. Users submit a job through
DUROC, DUROC will allocate the subjobs to the different GRAMs. Generally
speaking, the processes within a subjob are in the same LAN. The communication
within a subjob is faster than that between different subjobs. A subjob can be
considered a natural subgroup.

In BSP model, all communications, including DRMA and BSMP, do not take place
until bsp_sync(). When a program executes a DRMA or BSMP operation, it only
copies the data into send queue except high performance operations. The bsp_sync()
function should be called by all the processes in the job. All the processes first get the
destination pid from the schedule matrix (will be discussed in Section 6.4) which also
determines the process should send or receive messages first in a communication. A
bsp_get() operation reaches into the local memory of another process and copies
previously registered remote data held there into a data structure in the local memory
of the process that initiated it. So to complete a bps_get() operations needs two
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communications. In the first communication, the initiator sends a message to tell the
peer that it wants to get data from the registered memory. The size of the message is
very small; it can be piggybacked in the other message. In the second communication,
the peer sends the data back. A process which first sends messages should
experiences three steps: send-receive-send, but a process which first receives
messages should experiences three steps: receive-send-receive, in a complete
communication. If the communications take place within a subgroup, we should select
the sub synchronization rather than global synchronization to improve the
performance.

7   Performance Results

To quantify the performance of the BSP-G library, we have designed some small
experiments on a pairs of PC. Each PC has dual Pentium III 550MHz processors with
128Mbyte RAM connected via 100Mbps Ethernet, running Redhat Linux 7.2 SMP
version. The BSP-G was built using a nonthreaded, no-debug Globus toolkit 2.0. The
BSP library we use for reference is Pub 7.0.

Fig. 3. BSP-G Performance with parameter g

The BSP model simplifies a parallel machine by three components, a set of
processors, an interconnection network, and a barrier synchronizer, which are
parameterized as {p, s, g, l}. Parameter p represents the number of processors; s is the
rate at which computation can be performed by each processor. The parameter g is the
permeability of the communications system to continuous traffic between uniformly
random destinations. l is the time required for the barrier synchronization. The time
required for a superstep is given by:

Time for superstepi = maxi(s*wi)+maxi(hi*g)+l
Where hi is the size of the h-relation realized in this superstep by process i.
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Fig. 4. BSP-G Performance with parameter l

These parameters are obtained with the BSP benchmark program in the package of
BSPEDUpack provided by Rob Bisseling [18], a library of numerical algorithms
written in C language according to the BSP model, using the BSPlib standard library.
The benchmark program tries to expose the worst behavior of a system. The
performance is expected to be better in real applications.

Fig. 3 and Fig. 4 shows the performance of BSP programs. As seen from these
figures, performance of BSP-G library is close to that of PUB library.

8   Conclusions and Future Research

In this paper, we have presented an implementation of Grid-enabled BSP called BSP-
G. BSP-G exploits the services provided by Globus toolkit 2.0 to enable and hide the
heterogeneity of different computation resource. Users can run a BSP program on the
Grid but do not need to care abort the detail the resource. The benchmark shows the
performance of our implementation is very close to that of PUB library.

Our BSP-G will be applied in a project - complex material molecular simulating
grid, which is taken cooperatively by Shanghai University and East China University
of Science and Technology.

In the future, we expect to further our research on the following directions:
Build our BSP-G on future Globus Toolkit 3.0, which will be based on a new core

infrastructure compliant with the Open Grid Service Architecture (OGSA) [25].
Implement BSP-G based on MPI-G [6] so that MPI programs and BSP programs

can be developed and run in a unified environment.



A Parallel Programming Environment on Grid         233

References

1. D. Skillicorn, J. M. D. Hill, W. F. McColl: Questions and Answers about BSP. Scientific
Programming, vol. 6(3) (1997) 249–274

2. L. G. Valiant: A bridging Model for Parallel Computation. Communications of the ACM,
vol. 33(8) (1990) 103–111

3. Richard Miller: A Library for Bulk Synchronous Parallel Programming. Processing of the
BCS Parallel Processing Specialist Group workshop on General Purpose Parallel
Computing (1993) 100–108

4. Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau, Kevin Lang,
Satish B. Rao, Torsten Suel, Thanasis Tsantilas, Rob Bisseling: Standard: BSPlib: The
BSP Programming Library. Parallel Computing, vol. 24 (1998) 1947–1980

5. Y. Kee, S. Ha: An Efficient Implementation of the BSP Programming Library for VIA.
Parallel Processing Letters, vol.12, No.1 (2002) 65–77

6. http://www-fp.mcs.anl.gov/division/publications/abstracts/abstracts02.htm
7. K. Czajkowski, I. Foster, C. Kesselman: Co-allocation Service for Computational Grids.

Proc 8th IEEE Symp, On High Performance Distributed Computing, IEEE Computer
Society Press (1999)

8. Stephen R. Donaldson, Jonathan M. D. Hill, David B. Skillicorn: BSP Cluster: High
Performance, Reliable and Very Low Cost. Parallel computing, vol. 26 (2000) 199-2424

9. I. Foster, C. Kesselman, S. Tuecke: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of High Performance Computing Applications, vol.
15(3) (2001) 200–222

10. I. Foster, C. Kesselman: The Grid: Blue Blueprint for a Future Computing Infrastructure.
Morgan Kaufmann Publishers. (1999)

11. I. Foster, C. Kesselman: Globus: A Metacomputing Infrastructure Toolkit. International
Journal of Supercomputer Application (1997)

12. http://www.globus.org/gt2/admin/guide-overview.html
13. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke: A

Resource Management Architecture for Metacomputing Systems. Proc. IPPS/SPDP '98
Workshop on Job Scheduling Strategies for Parallel Processing (1998) 62–82

14. O. Bonorden, B. Juurlink, I. von Otte, I. Rieping: The Paderborn University BSP (PUB)
Library - Design, Implementation and Performance. Proc. of 13th International Parallel
Processing Symposium & 10th Symposium on Parallel and Distributed Processing
(IPPS/SPDP), San Juan, Puerto Rico, April 12 – April 16, 1999.

15. Tong Weiqin, Dong Jingyi, Meng Rui: Targeting BSP Library for SMP Cluster. J. of
Shanghai University. Vol. 4, Suppl. Dec (2000)

16. http://www.globus.org/gram/rsl_spec1.html.
17. I. Foster, C. Kesselman: The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann (1998)
18. http://www.math.uu.nl/people/bisselin/software.html
19. T. L. Williams, R.J. Parsons: The Heterogeneous Bulk Synchronous Parallel Model.

Parallel and Distributed Processing. Lecture Note in Computer Science, vol. 1800,
Springer-Verlag, Cancun, Mexico, (2000) 102–108

20. http://www.upb.de/~pub/docu/pub8.pdf
21. D. Dunning, G. Regnier, G. McAppine, D. Cameron, B. Shubert, F. Berry, A. Marie

Merritt, E. Gronke, C. Dodd: The Virtual Interface Architecture. IEEE Micro, vol. 18(2)
(1998) 66–76

22. V.S. Sunderam: PVM: A Framework for Parallel Distributed Computing. Concurrency:
Practice and Experience, vol. 2(4) (1990) 315–339

23. Message Passing Interface Forum: MPI: A Message Passing Interface Standard. Tch.
Report Version1.1, Univ. of Tennessee, Knoxville, Tenn (1995)



234         W. Tong, J. Ding, and L. Cai

24. Jonathan M. D. Hill, Stephen R. Donaldson, David Skillicorn: Stability of
Communication Performance in Practice: From the Cray T3E to Networks of
Workstations. Technical Report PRG-TR-33-97. Oxford University Computing
Laboratory (1997)

25. I. Foster, C. Kesselman, J. Nick, S. Tuecke: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Globus Project (2002)

26. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman: Grid Information Services for
Distributed Resources Sharing. Proc. 10th IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10). IEEE Press (2001)

27. S. Fitzgerald, I. Foster, C. Kesselman, G. V. Laszewski, W. Smith, S. Tuecke: A
Directory Service for Configuring High-Performance Distributed Computations. Proc. 6th
IEEE Symp. on High Performance Distributed Computing

28. J. Bester, I. Foster, C. Kesselman, J. Tedesco, S. Tuecke: GASS: A Data Movement and
Access Service for Wide Area Computing Systems. http://www.globus.org

29. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke: A Security Architecture for Computational
Grids. Proc. 5th ACM Conference on Computer and Communications Security
Conference (1998) 83–92

30. Foster, D. Kohr, R. Krishnaiyer, J. Mogill: Remote I/O: Fast Access to Distant Storage.
Proc. Workshop on I/O in Parallel and Distributed Systems (IOPADS)

31. http://www.globus.org/research/papers/ogsa.pdf


	1   Introduction
	2   Grid Computing
	3   BSP Model
	4   Previous and Related Works
	4.1   Other Implementations of BSP
	4.2   MPICH-G

	5   Motivation of BSP-G Model
	6   Implementation of BSP-G
	6.1   User Interface
	6.2   Creation of Communication Channels
	6.3   Barrier Synchronization of a Superstep

	7   Performance Results
	8   Conclusions and Future Research
	References

