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Abstract. In the present paper channel assignments in cellular architec-
tures are considered. This is quite important in cell and channel planning
since reusing channels in cells allows to manage resources and to serve
users effectively in the system. The optimal solution is offered here for
the case of co-channel interference. Previous solutions on co-channel in-
terference are based on regular hexagonal models for service areas. A
novel technique is employed in this work that does not depend upon any
geometric form of cells. It is obtained that the optimal number of chan-
nels equals the density of a special graph. Earlier analytical results on
span minimization show lower bounds meanwhile we provide the upper
bound in this paper.

1 Introduction

A mobile computing has become an essential part of modern telecommunication.
As demands for wireless mobile communication grow under limited resources of
cellular systems, it is very important to use frequency channels as efficiently
as possible to maintain the necessary quality of services. Thus, frequency reuse
is the key concept of the cellular network design [I]. According to the concept
the same frequency channel can be simultaneously used in different cells. The
geographical distance between cells should be sufficiently large. Otherwise, inter-
ference may decrease the quality of service. So, the goal of Channel Assignment
Problem is an effective utilization of frequency region under some interference
constraints.

There exist two types of interference constraints. 1) The co-channel con-
straint, where the same channel cannot be assigned to certain pairs of radio
cells simultaneously. An interference between different channels is absent for any
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cells. Transmitters having a mutual distance no smaller than admissible distance
r may use the same frequencies, when r is a known constant. 2) The adjacent
channel constraint, where any couple of assigned channels must be separated by
a certain frequency band. This band depends on the physical distance between
cells which use the channels simultaneously. If the distance is sufficiently large
then the band equals zero.

The interference constraints generate two kinds of Channel Assignment Prob-
lem. Let us consider the restriction 1). We have some quantity of potential chan-
nels. Each cell should get a set of available frequency channels under constraint
1). It is necessary to minimize a number of used channels in the cellular system.
We name it as minimization of the number of channels (MNC). The next kind
of Channel Assignment Problem is generated by restriction 2). Let us remark
that the constraint 2) generalizes the constraint 1). Here we have a bandwidth.
Frequency channels are extracted from the bandwidth and assigned to cells by
taking into account the constraint 2). It is required to minimize the bandwidth
which is used by the cellular system. In literature the technical term span is
applied [4]. The span of an assignment is the difference between the largest and
the smallest channels used [12]. Therefore, it needs to find the minimum span
over all possible assignments. We name this as Span Minimization (SM).

For channel assignments a simplified model of cellular network is used. A ser-
vice area of cellular network has been modeled by a net of regular homogeneous
hexagonal cells [4BI7RITOIT2]. It is a good approximation for the use of omni-
directional antennas. Let us remark the hexagon is non-unique model of a cell.
A cell can be a triangle if antennas of cellular network have a sector direction
[2]. If an office network is designed, rectangular cells are used [3]. A geometry of
cells can be used by methods for frequency assignment.

Now we shall give the following definition. The cellular graph is a graph where
each cell of the cellular network is represented by a node and two nodes have
a common edge between them if the corresponding cells are adjacent to each
other [7]. Frequency assignment problems are reduced to a problem of cellular
graph coloring. For an arbitrary graph the problem is NP complete. However, the
optimal number of channels is found by using some properties of cellular graphs.
Without loss of generality it is assumed that a set of available frequencies for a
cell consists of a single element [48].

In previous works MNC under regular hexagonal cell system was investigated
and an optimal solution has been found. For this system the optimal number of
frequencies is given in [6]. In [4] MNC has been considered for Euclidean admis-
sible distance r and a channel assignment algorithm has been offered. The case
that r equals a number of cells was named r-distance problem and investigated
n [718]. However, results discussed are out-of-use for other cell systems. A cell
can be non-hexagonal, r can be different for other part of service area and so on.
In this paper we present an alternative technique for computing the the optimal
number of channels, which can be more widely applicable.

Generally, SM is an NP-complete problem [5J13]. The optimal solution of the
problem is obtained only for particular cases [I4]. In [I5] a branch and bound
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algorithm is used, but this approach does not guarantee against the complete
enumeration. For a large-scale system an approach for the optimal solution is
impractical. Thus a simplification of the problem or an approximation technique
have been used, such as neural network based algorithms [I6/I7J18], simula-
tions [19120], and genetic algorithms [9l21]22[23]. Many authors have studied
lower bounds for SM. The most popular bounds are based on cliques [7I8] or
on minimum weight Hamiltonian paths [TT[12]. The technique for mathematical
programming has been applied for lower bounds [12J5]. In this paper we offer
unimprovable upper bound for SM.

The paper is organized as follows. In Section 2, MNC is considered. We
prove the optimal number of channel is defined by the density of special graph.
In Section 3, SM is investigated. An upper bound for frequencies assignment
under is offered with some examples. Section 4 is a brief conclusion.

2 On Minimizing the Number of Channels

Let us consider a service area covered by omnidirectional base stations. Admis-
sible distance r can be differ for other part of service area. Let G(V, E) be a
cellular graph, when V is the vertex set and F is the edge set. By d(u,v) denote
distance from u to v, when u,v € V. Now we shall give the following definitions.

Definition 1. A graph is called r-graph and is denoted by G, if V(G,) =
V(G), E(G,) = {(u,v) : d(u,v) <rin G}

Definition 2. A complete subgraph of G, is a cluster if it is not contained
by other complete subgraphs.

It is clear MCN is reduced to the graph coloring problem for G,.. The optimal
number of channels for the regular hexagonal cell system equals a power of cluster
[614[7/8]. Here we do not use any assumption for geometric form of cells.

Lemma 1. Let the service area be completly covered by cells, i.e. there will be no
non-signalling (empty) zone. Then the corresponding cellular graph is chordal.

Proof. Without loss of generality we may consider a simple cycle with 4 nodes
in cellular graph. The service area of four corresponding base stations has no
empty zone. Let two non-adjacent vertices of the cycle have no edge between
them. The cell areas for those two base stations are non-overlapping sets. Let P
be the service area within the cycle excluding those two cell areas. Denote by
A and B service zones of other base stations into P. It is clear that PN A # ()
and PN B # (. Tt follows from the lemma condition that P = A U B. We have
P\ A# (. Hence, P\ A C B or P\ A= B, ie. set B is the complement of
set A. So, if two vertices is non-adjacent then other vertices should be adjacent.
The proof is completed. ¢

Let us remark E(G,) D E(G). Hence G, is a chordal graph too. The following
theorem is needed for the sequel.

Theorem 1. Every chordal graph is perfect [24).



Analytical Approach for Channel Assignments in Cellular Networks 469

It is known that the chromatic number of the perfect graph is equal to the
graph density. So, we have

Theorem 2. The optimal number of channels equals the density of correspond-
ing r-graph.

3 Upper Bound for Span Minimization

Here we use the same notation as in the section above. By f; denote a frequency
assigned to cell 5. An admissible frequency assignment will be a set of positive
numbers {f;} such that

\fi — fil > cij Vi,jeV.

The lowest frequency equals 0. Hence, span F' is the maximum frequency
assigned to the system. That is,

F=maxf;, ieV.

It is necessary to find min F' among all admissible assignments. A compatibil-
ity matrix is a symmetric matrix C' = (¢; ;) with nonnegative integer entries ¢; ;
[5]. We say that C is the distance compatibility matrix if the following conditions
hold

Vi, jyu,v € Vi ¢y = ey if d(4,5) = d(u,v).

As in the literature, the distance compatibility matrix is assumed and let us have
values sg, S1, 2, - . ., such that

Cii=5 VieVandVi,j eV : c(i,j)=s,ifd(i,j) =k, ke {l...n—1}.

It is clear that sg > s1 > s9....

As in [R[9] we consider the problem for a single mobile user in each cell. This
assignment can be used for more number of users. Suppose F} is the assignment
for a single customer per cell, the frequency f; is assigned to cell i, and we
have K calls per cell. If sg is sufficiently large, then the assignment f;, f; +
80,--- fi + (K —1)s, is used in cell 4, else we use the assignment f;, f; + Fy +
80y .- fi+F1+ (K —1)s,. Generally, it is not admissible for an optimal solution
nor lower bound. However, it is acceptable for upper estimation. Let us consider
the following example (See Figure 1). We have cellular network (A4, B, C, D) and
one customer in each cell. Interference constraints are so = s; = s. The optimal
span equals 2s and the distribution of frequencies is shown. We receive the same
results. However, if two customers are served in cell D, we receive span 4s using
our approach, meanwhile the optimal span equals 2s. Let us remark if we have K
customers in each cell (homogeneous traffic) then an optimal solution is reached
by the approach above.

Now we offer the following technique for the frequency assignment of one
user per cell which produces the unimprovable upper bound of a span and an
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Cellular network

cells A B C D A B C D
number of
customers 1 1 1 1 1 1 1 2
our
. 8 2s 0 S S 28 0 |s;ds

assignment
optimal ~

P . § 2s 0 8 5 2s 0 |s;2s
assignment

Fig. 1. The example of frequency assignment

admissible frequency assignment. For some particular cases this assignment will
be an optimal.

1) Let G(V, E) be a cellular graph. We consider only interference constrain
s1 and decide the graph coloring problem for G. By x denote the chromatic
number of G, i.e. colors 0,1,...x — 1 are used. If the node i received color k,
then f; = ksq1. In adjacent cells 4, j we have |f; — f;| > s1. If s = 0 then SM is
decided and F = (x — 1)s;.

2) Let so # 0. Suppose the vertices 4,j have the same color. If d(i,j) = 2,
then corresponding vertices cannot use the same channel. The set V' is divided
in subsets V;,i = 1,...,x, where elements of V; have the same color in G.
Now we decide the graph coloring problems for graphs G;,¢ = 1,...x, where
V(G;) = V; and an edge (u,v) € E(G;) if d(u,v) = 2 in G. Let the chromatic
number of G; be y;. If the node i € G received color k, then f; = kss. In
adjacent cells i, of G1 we have |f; — fj| > s2 but the condition for s; should
be true too, i.e. |max f; —min f;| = s1, ¢ € G1, j € G2 Hence, for nodes of
G we use frequencies 0, s9,. .., (x1 — 1)s2, for nodes of Gy we use frequencies
(x1 —1)s2 + s1, x182 + s1,...,(x1 + x2 — 2)s2 + s1, and so on. If s3 = 0 then
SM is completed and S = (x1+ X2+ ...+ Xy — X)s2 + (x —1)s1. If 53 # 0, then
the process above is repeated, and so on, until s; = 0,7 =4,5....

An example for s3 # 0 is on figure 2 (3-band buffering system). It is clear the
offered method get upper bound for SM. Let us consider example from [8] (see
figure 3). Here s1 > sy # 0,83 = 0. The assigned frequency channels are into
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Fig. 2. 3-band buffering system.

vertices. A couple (a,b) in node mean that corresponding cell receive channel
asi + bsy. Our method gives the same assignment. If s; < 2s5, then the shown
solution is optimal,hence, we received the unimprovable upper bound. Else, the
solution can be improved as it shown on the figure.

4 Conclusion

In most of real cellular networks, the homogeneous hexagonal model is unrealis-
tic. We have obtained the optimal number of channels under co-channel interfer-
ence for more practical cellular networks which are not necessary homogeneous
and hexagonal. It is proved that the optimal number of channels equals the
density of r-graph constructed from cellular graphs. For the span minimization
the upper bound is obtained. The division of compatibility matrix is used and
sequential solution of graph coloring problems are made. The distance between
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Fig. 3. Example of solution

cells is defined as a path in cellular graphs and we consider the distance compati-
bility matrix. Our approach is applicable to Euclidean distance and an arbitrary
compatibility matrix.
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