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Abstract. An important aspect of any reliable communications pro-
tocol is its robustness against adverse network conditions. This paper
presents a stochastic model for predicting the overhead introduced by
the error handling algorithms of the JRM-protocol for various levels of
network degeneration. To validate the model, a series of experiments were
conducted. This paper compares those experiments with the predictions
of the model.

1 Introduction

The effective use of network bandwidth has always been an issue in distributed
virtual environments (DVE) [I]. Multicasting addresses this issue, but tradi-
tional multicast protocols do not guarantee message delivery. For this one needs
reliable multicast protocols [2]. Although there are already many such protocols,
none is suitable for distributed virtual environments [3]. The most important
problem is that those protocols are typically designed for a single sender - many
receivers situation. In DVEs many nodes are simultaneously sending and re-
celving messages, i.e. one has a many-to-many interaction pattern [4]. The Java
Reliable Multicast (JRM) [6] protocol is a member of the more general multipeer
[5] protocol family and handles the many senders - many receivers situation, with
most nodes exercising both functions.

A feature of the reliability protocol is the overhead it entails as a function of
worsening network conditions. We present a stochastic model to determine this
overhead. The predictions of the model are verified against experimental data.

2 The Protocol

In this description of the JRM-protocol we will highlight the error-handling
components because they are the subject of discussion in this paper. Details of
the general background can be found in [6]

JRM is a message based protocol. This means that there is no connection
and datastream between sender and receiver. Instead, messages, each unrelated
to the previous, are transported from sender to receiver. Every message consists
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of one or more packets, each one transmitted as a UDP datagram. Typical values
for DVEs are a send frequency of 30 messages per second, a message size of 1
packet and a packet size of 1 KB.

JRM is a receiver-initiated protocol [7]. The receiver has the responsibility of
detecting errors and missing packets. If one occurs, a negative acknowledgment
(NACK-request) is send to the sender requesting retransmission of the particular
packet. This approach is much more scalable than the sender-initiated protocols
.

To recover from an erroneous or missing packet, it is essential to be able to
identify all packets uniquely. In JRM this is realized by the 4-tuple (VRN, MCG,
MSN, PSN). The first number is the unique number assigned to the sending
DVE-object (VRN) when it enters the virtual world. The second number is the
multicast group (MCG) on which this message is transmitted. The third number
is the message sequence number (MSN). It uniquely identifies every message
sent by a participant on a given multicast group. The fourth number is the
packet sequence number (PSN). This one uniquely identifies every packet within
a message. As such, the 4-tuple (VRN, MCG, MSN, PSN) uniquely identifies
every datagram in the system.

The identifiers discussed above are embedded in every transmitted datagram.
They make it straightforward to reconstruct the message and identify the sender.
Whenever a gap is detected between MSNs received from a particular sender,
one or more messages are missing. Then, for each missing message, the receiver
transmits a NACK-request containing the MSN in question and PSN set to one.
The packets with a particular value for (VRN, MCG, MSN) constitute a message.
Observing the sequence of PSNs in such packets, the receiver can detect missing
packets in a message and transmit a NACK-request identifying the message and
listing the missing packets. In both cases, the sender will then retransmit all
missing packets. These are known as NACK-response packets.

In order for the protocol to function sensibly in a DVE context, certain time-
related constraints are required. When the first packet of a message arrives, a
new message-holder containing that packet is created by the receiver. The header
of each packet contains the total length of the entire message. This information
is used to determine the number of packets necessary to completely receive the
message. A count-down timer is associated with each message-holder and on con-
struction it is set to receive Timeout. Whenever another packet for this message
arrives it is inserted into the correct message-holder and the corresponding timer
is reset. When the timer reaches zero, the message is inspected for missing pack-
ets. If there are none, the message is complete. Otherwise a NACK-request is
generated and the timer is set to nackTimeout. If no NACK-response is received
before the timer runs out, nackTimeout is increased and another NACK-request
is sent. This cycle repeats a preset maximum number of times. After that, the
message is considered lost and removed from the system. If on the other hand,
a NACK-response is received, the timer is set to recvTimeout and the algorithm
starts all over again.
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The sender keeps every packet of every outgoing message in a buffer. Again
a timer is associated with each message and it is initially set to sendTimeout
seconds. This timer is reset with every incoming NACK-request for any of the
packets of that message. When the timer runs out, the sender assumes that all
receivers did receive the message correctly and removes it from the buffer.

Each of the timers recvTimeout, nackTimeout and sendTimeout is responsive
to the frequency with which timeouts occur. If timeouts are frequent the timeout
interval is lengthened. If on the other hand the timer is frequently reset while
there is still a significant amount of time left, the timeout interval is shortened.
This approach matches the timeout interval to current operating conditions and
optimizes responsiveness.

Two key concepts in our discussion are the “effective throughput” and the
"total throughput”. The effective throughput refers to the messages that have
been received in their entirety. The total throughput refers the datagrams arriv-
ing at the receivers end. Both are expressed in kilobytes per second (KB/s). The
discrepancy between both is a consequence of retransmission of missing packets
i.e. of the activity of the reliability mechanism.

3 The Reliability Overhead Prediction Model

Let us assume that we can characterize the operating conditions of the commu-
nication channels between each of the nodes by an errorRate e. It expresses the
probability that a packet will not arrive at its destination due to network condi-
tions, buffer overruns, and so on. The probability for a message consisting of n
packets to arrive directly, i.e. without retransmissions of missing packets, is then
(1 —e)™. This number decreases significantly with increasing n: at errorRate 0.2
(20%) a message with three packets has only a fifty percent chance of making it
directly. At errorRate 0.3 a message with one single packet has 70% chance and
a message of 10 packets only 2.8%)

Obviously, the number of retransmissions needed to send the message com-
pletely increases with e and n. Let us consider this in more detail. Initially each
of the n packets are transmitted. Of these n packets, on average, a number of
n X e will be missing and need to be retransmitted in response to a NACK-
request. Of these n x e, a number of (n x e) X e or n x e will again fail to arrive
and have to be retransmitted. Thus, on average, the number of transmissions
required by a message of length n packets is given by ().

n
(&

= (1)

oo
[Npackets] =nX Zei =
=0

However, in addition we need to take into account the intervening NACK-
requests that are sent by the receiver to signal missing packets. Above we deduced
that after j NACK-requests and retransmissions, an average of n x e’/ packets
are sent. The probability that all of them arrive and no further NACK-requests
will be needed is (1 — e)"*¢’. Otherwise we have (&) for the probability that
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more NACK-requests will have to be sent. One has to be careful because n x e’
is only an average and for this reason (2)) will only be an approximation of the
real probability. ‘

P{#Nacks > j} =1— (1 —e)™*¢ (2)
The probability that exactly j NACK-requests are required to complete the
message transmission is given by (B)

P{#Nacks = j} = P{#Nacks > j — 1} — P{#Nacks > j}
_ (1 _ e)nxe] _ (1 _ e)’ﬂ)(€]71 (3)

So, on average and in the assumption that none of the NACK-requests are lost,
() gives the number of NACK-requests that need to be transmitted to receive
one complete message.

[Nacks] = Y _ 3 x P{#Nacks = j} (4)
j=0

After substituting (3)) into (@) and canceling terms one obtains ().
NNacks Z 1- 1_67”(6]) (5)
7=0

Of course, the above is derived on the basis of averages and constitutes an
approximation. In an exact approach one must consider all delivery scenarios
separately and sum them with their probabilities. That approach however quickly
becomes intractable for increasing n.

As with the data packets, the NACK-requests are subject to the effects of
the errorRate n. Thus by the same reasoning as before we arrive at (6l for the
final (approximate) number of NACK-requests.

21— (1 —e)mxe
2 =0 1£e ") ©)

Taken together with (Il) we find (7)) for the total number of packets, data and
NACKSs, required to complete the message transfer.

[NTransmissions] = [n ! Z;OO% : il o )] (7)

[NNacks] =

When one uses the same example as above, () predicts that at errorRate 0.3, a
message with length 1 will, on average, need 2.07 transmissions. With a volume
of 30 messages per second, one has a total of 61.99 transmission per second, or
an overhead of 31.99 transmissions per second (52%). For the second example
where a message of length 10 is considered, on average, 17.19 transmission per
message are needed. With a volume of 30 messages per second, one has a total
of 515.67 transmission per second, or an overhead of 215.67 transmissions per
second (42%).
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4 The Experiment

A series of experiments has been conducted to investigate the effective and total
throughput of the JRM. The objective is to estimate the overhead due to the
reliability algorithms in the protocol. To simulate the effect of dropped or collid-
ing packets caused by a adverse network, an artificial errorRate is introduced at
the sender’s side. This is done by means of a uniform random number generator.
Just before the Java-send() method is called, a random number is generated and
if the result is below a configurable threshold, the packet is discarded.

The experiments are performed on a local area network (LAN) consisting
of only two computers. One of them acts as the sender while the other one is
the receiver. This way one can be sure that almost all packets on the network
are JRM-related. The first experiment compares the predicted number of trans-
missions to the actual amount. As such, one can state that the first experiment
is used as a validation for the derived stochastic model. The second experi-
ment measures the influence of the JRM error handling protocol on the effective
throughput. Consequently, one can say that this experiment shows the effect of
the errorRate from the JRM-user’s point of view. Both experiments are repeated
for an errorRate of 0, 5, 10, 15, 20, 25 and 30% and a message size of 1 and 10
packets, with each packet 1 KB in size. Other aspects of the JRM-protocol have
already been tested and are described in []].

All experiments were repeated using different operating systems (Windows
98, Windows 2000, SuSe Linux 8.0 and Solaris 8). The computers used for these
experiments are equipped with a Pentium-IIT 733MHz processor, 64 MB memory
and a 100Mb network interface card (NIC). For Solaris 8, a Sun 450-Enterprise
server was used. The Java runtime system is version 1.4.0. Because the results
of these experiments are exactly the same on all of the operating systems, only
one result is shown on the graphs.

The goal of the first experiment is to measure the influence of the errorRate
on the overhead caused by the error handling algorithms. This is done by cor-
relating the errorRate to the number of transmissions necessary to completely
send one message. In this experiment, the sending node transmits a total of 1000
messages at a rate of 30 messages per second. The sending node registers the
amount of transmitted Msg-packets and NACK-responses. The receiver regis-
ters the amount of transmitted NACK-requests. The average number of packets
[Npackets) necessary to transmit one message is then given by ®)

MsgPackets + NAC Krequests + N ACKresponses (8)
1000

Figures [M and [ show the result of the experiment for respectively 1 and
10 packets per message. The predicted values are very close to the measured
ones when a message size of 1 packet is used. When one uses a message size of
10 packets, both values remain very close to each other until an errorRate of
20%. After this, the model consistently underestimates the real value. The most
important reason for this phenomenon is that when there is a high volume of
packets (in this experiment 300 per second) combined with a high errorRate, the

[Npack:et] =
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Fig. 1. Influence of the errorRate on the number of transmissions per second with a
message size of 1 packet.

total number of network datagrams per second is so high that the NIC starts
missing datagrams and that network collisions start occurring. Furthermore, the
model is only an approximation because the dynamic aspects of the protocol, the
adapting timeouts, are unaccounted for. From both figures, one can conclude that
in the domain typically applicable to DVEs, the formula (7)) yields an accurate
estimate of the reliability overhead.
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Fig. 2. Influence of the errorRate on the number of transmissions per second with a
message size of 10 packets.

The goal of the second experiment is to measure the influence of the errorRate
on the effective throughput. For this experiment, the sending node generates 30
new messages per second. It does so for the entire duration of the experiment.
The number of messages reaching the receiver in a 60 second window will be
measured. To ensure a steady-state condition of both sender and receiver, this
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60 second test period will only start after at least 10 seconds of activity. This
way, one can be sure that all objects and data structures are fully initialized.

350 A

message size = 1 packet
——— message size = 10 packets

300 A

—_——

250
50

effective throughput (KB/s)

0 5 10 15 20 25 30 35

ErrorRate (%)

Fig. 3. Influence of the errorRate on the effective throughput.

Figure [3] shows the results of this experiment. One can see that the effective
throughput remains very good, even under a very high errorRate. This is because
the design decision was made that the leaky bucket algorithm does not take the
error handling messages into account [6]. And as such, 30 new messages will
be transmitted each second, independently of the current network condition. A
disadvantage of this approach is that when the network degenerates, the load
on the sending nodes increases, which could eventually lead to instability. The
strength of our approach is that, as long as the network problems are moderate
in nature and duration, the effective throughput remains optimal.

When one compares the results of both experiments, one can see that the
increase in the number of transmissions per message coincides with the decrease
in effective throughput. It is very important to note that the decrease in effective
throughput is much less than the increase in transmissions per message. The
remaining decrease originates from the fact than NACK-packets have precedence
over Msg-packets and the more NACK-packets there are, the longer the Msg-
packets have to wait before they can be transmitted.

5 Conclusion

From this paper, two important conclusions can be drawn. The first one is that
the stochastic model proposed in this paper adequately predicts the overhead
introduced by the reliability algorithm of JRM when one restricts to the domain
typically applicable to DVEs.

The second important conclusion is that the JRM-protocol is very resilient
against adverse network conditions. Only under extremely high errorRates of
25% and more is a degradation of the effective throughput observable.
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