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Abstract. Exploitation of a real-time computer experiment1 connected
with advanced education of statistical mechanics and thermodynamics
allows us to study a commonly occurring phenomenon of heat transfer
through a diathermic wall; this wall separates the container into two
parts consisting of an ideal gas at different temperatures. The system as
a whole is isolated from the surroundigs by very massive border walls. We
assume that the walls are rough which introduces the necessary spatial
molecular chaos in the system. We study (i) the thermalization process
where the temperatures of both parts of the container relax to the same,
final one. We found (ii) that the temperature difference relaxes according
to the empirical Newton’s law of cooling obeyed by real systems. Finally,
we confirmed (iii) the law of entropy increase and verified its validity for
this small system. We used a simple hybrid molecular dynamics where the
scattering of atoms has a random character but between the successive
scattering steps the motion of atoms is deterministic.

1 Introduction

The second law of thermodynamics is still a subject of intensive study [1,2]
by physical, mathematical and numerical means in the context of chaotic [2,3]
and/or small systems, molecular motors, living organisms, theory of informa-
tion [3], systems in extreme conditions and/or far from the stationary (or equi-
librium) state called also nonlinear nonequilibrium and fluctuation-dissipative
thermodynamics [4]. Another, quickly developing branch of statistical physics is
the non-extensive thermodynamics which generalizes the second law of thermo-
dynamics and the classical definition of entropy [5]. The validity of the principles
of thermodynamics is still verified the more so as there are several almost (but
not fully) equivalent formulations of the second law of thermodynamics. The
principal open question is whether the second law of thermodynamics is a basic
law or a coarse-grain one which somehow follows from more fundamental ones?
In other words, what is the relation between the macroscopic description of na-
ture and its microscopic foundation? Hence, one is justified to pose the question
1 This computer experiment is the Java applet located under the internet address
http://tempac.fuw.edu.pl/erka/clausius/Clausius.html.
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whether complexity and irreversability are a new quality of matter or only an
aspect of microscopic laws [6,7]?

Quite often, the law of entropy increase is presented by experiments related
to expansion or mixing of (ideal or real) gases [8,9]. However in this work we
considered, by a dynamical computer experiment, the more complex process of
heat transfer which as yet is the most important one both for reversible and
irreversible thermodynamics.

The obtained results are affected by fluctuations which, fortunately, for more
than several dozen atoms are sufficiently small to allow observing the expected
trends in the data. Our computer experiment gives students the opportunity
to currently view (during the lecture) the microscopic realization of the heat
transfer process being the most important one for the statistical mechanics and
thermodynamics.

2 Model and Hybrid Algorithm

We define the model together with the hybrid algorithm which allows us to sim-
ulate and visualize in real time as the Java applet, the evolution of quantities
relevant to nonequilibrium and equilibrium statistical mechanics and thermo-
dynamics. We use the algorithm where the simplest version of the molecular
dynamics is mixed with the simplest ’hit and miss’ Monte Carlo recipe. This
hybrid approach can be an example of the Wolfram idea [10] saying that al-
ready simple computer programs can model a complex behaviour of physical
sytems, especially their evolution, which well describes the essential features of
the empirical ones.

Preparation of the initial state. We consider the model of an ideal gas (i.e.,
a gas composed of classical, noninteracting, identical point particles) located in
a container isolated from the surroundigs by very massive border walls. The
container is devided into two parts (of equal volume) by a diathermic wall which
makes possible heat transfer between them (c.f. Figs.1 and 2). This means that
both parts of the container are in thermal contact [11,12] and therefore particles
can indirectly interact. For an ideal gas the assumption is justified that initially
the kinetic energy of the particles is the same in each part of the container
although the orientations of the velocity vector of the particles are random (other
distributions of kinetic energy, for example the Maxwell one, are also possible
but it does not seem necessary to use them for the ideal gas).

The gas contained in the left part consists of NL particles and has initially
the temperature TL

0 ; we have the same for the right part. In general TL
0 �= TR

0
and NL �= NR (all these quantities can be introduced at the beginning of the
computer experiment). The initial temperatures are simply defined by using the
kinetic energy of particles εj

0, j = 1, 2, . . . , NL + NR,

kBTL,R
0 = εj

0 =
(pj,x

0 )2 + (pj,y
0 )2

2µ
, (1)
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Fig. 1. The intermediate stage of heat transfer through the diathermic wall (the upper
window). Results of the system evolution after 253 time steps are shown for temper-
atures of both parts of the container (the middle window), for the difference of both
temperatures (the lowest window) and the change of entropy of the system (the right
middle window); note that the lowest window has a semi-logarithmic scale while the
two remaining ones have linear scales.

where kB is the Boltzmann constant, µ is the mass of any particle and pj,x
0 , pj,y

0
are its (planar) momentum components. Both particle numbers NL and NR are
placed directly below the respective parts of the container while temperatures are
placed below the red and green thermometers, respectively, shown in Figs.1 and
2; additionaly these temperatures (as well as the temperature of the diathermic
wall defined below) are given as the initial values in the dynamic table shown in
the same figures (and described in Sec.3).

The initial temperature of the diathermic wall is defined as proportional to
the average kinetic anergy of all particles

kBTw
0 =

1
N

(
NL∑

j=1

εj
0 +

N∑

j=NL+1

εj
0)
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Fig. 2. Almost final stage of the heat transfer through the diathermic wall as results of
the system evolution (after 1148 time steps) are shown until the temperature difference
was not greater than 1K; note that the lowest window has a semi-logarithmic scale
while the two remaining ones have linear scales.

= kB(
NL

N
TL

0 +
NR

N
TR

0 ), (2)

where N = NL + NR is the total number of particles.
We prove in Sec.3 that expression (2) also defines a temperature neutral

diathermic wall, i.e., a wall whose temperature can only fluctuates but doesn’t
systematically change.

Indirect interaction between particles. To develop the stochastic dynamics
of the system we devided our procedure into several stages. The first stage is a
necessary discretization procedure of time t, i.e., t = m∆t, where ∆t is a discrete
time-step and m = 1, 2, . . ., is the number of the successive steps.

In the second stage we consider an inelastic scattering of particles by the
diathermic wall; only in this way the particles can indirectly interact between
themselves. We assume that within a given time interval ∆t exactly nL(≤ NL)
particles from the left part of the container and nR(≤ NR) particles from the
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right one interact with the diathermic wall (both nL and nR are fluctuating m-
dependent numbers). If we denote the internal energy of the diathermic wall in
the mth time-step by εw

m and the corresponding kinetic energies of particles by

εj
m =

(pj,x
m )2 + (pj,y

m )2

2µ
, j = 1, 2, . . . , nL + nR, (3)

we can find the energies of each interacting object in the next mth +1 time-step
by applying the local principle of equipartition energy. Namely,

εm+1 =
1

nL + nR + 1
[

nL∑

j=1

εj
m +

nR∑

j=nL+1

εj
m + εw

m], (4)

which is already the same for all scattered particles and the wall; as it is seen,
the diathermic wall is treated here as an additional particle (which can only
oscillate due to reaction forces but is not subject to the translatory motion, i.e.
its momentum is absorbed by the massive border walls). It should be emphasized
that relation (4) is local in time and results from the energy transfer (in the
form of heat); this transfer doesn’t necessaryly proceed from the warmer to
colder part of the container. The extension of our assumption in order that
the diathermic wall would consist of Nw particles is straightforward (then εw

m

should be interpreted as the total energy of Nw particles and the denominator
in expression (4) should be changed by nL + nR + Nw).

The surface of the diathermic wall is rough which means that the component
of the particle momentum directly before scattering parallel to the surface dif-
fers, in general, from the analogous component directly after the scattering, in
distinction to the mirror type of scattering. Hence, the momentum components
of the jth particle (j = 1, 2, . . . , nL + nR) are given by

pj,x
m+1 = − cos(φj)

√
2µεm+1,

pj,y
m+1 = sin(φj)

√
2µεm+1, (5)

where the scattering angle φj is a random variable, index x denotes here the
direction perpendicular to the surface, while y the parallel direction (as the
diathermic wall is vertical here, c.f. Figs.1 and 2).

In the third stage the position (xj
m+1, y

j
m+1), j = 1, 2, . . . , nL + nR; m =

0, 1, 2, . . ., of any particle directly after scattering at the diatermic wall is found
by the simple rule; the initial step of this rule is the division of the time interval
∆t = ∆t1 + ∆t2, where during time ∆t1 a particle reaches the wall while ∆t2 is
the departure time from this wall. We can write,

∆t1 =
xw − xj

m

pj,x
m /µ

(6)

independently of whether the particle is located in the left or right part of the
container (here xw is the x-component of the position of the diathermic wall).
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Hence, the x-component of the particle position

xj
m+1 = xw + ∆t2

pj,x
m+1

µ
, j = 1, 2, . . . , nL + nR, (7)

where ∆t2 = ∆t − ∆t1, while the y-component is given by the relation

yj
m+1 = yj

m + ∆t1
pj,y

m

µ
+ ∆t2

pj,y
m+1

µ
. (8)

As it is seen, from the knowledge of the state (i.e., the position and momentum)
of the particle directly before the scattering at the diathermic wall we find its
state directly after the scattering.

Scattering at the massive border wall. The interaction of any particle with
this wall is elastic although the border wall is again rough. This means that
relation (4) is violated while in expressions (5) we can assume εj

m+1 = εj
m, j =

1, 2, . . . , NL +NR; m = 0, 1, 2, . . ., i.e., directly before and after scattering of the
particle at the massive border wall the energy of any scattered particle is the
equal. Fortunately, expressions (6), (7) and (8) are, in principle, valid in this case
but the following comment should be made. Namely, these relations regard the
vertical border walls, where xw means here the x-component of their positions.
For horizontal border walls relations analogous to (6), (7) and (8) are obeyed.

We should emphasize that though we deal with ideal gas two mechanisms
of mixing have been introduced: (i) the space mixing of the particles as the
scattering angle of any particle is random and (ii) the mixing based on the local
principle of equipartition of energy which divides the energy between two parts
of the container. Hence, we extended the possibility of application of the ideal gas
model that can be used as the reference one, for example, for the Boltzmann gas,
where binary collisions between particles are taken into account and the entropy
is calculated analytically (in the approximated way) by using the Boltzmann
kinetic equation and the H function [13].

3 Time-Dependent Thermodynamic Quantities

In this work two types of thermodynamic quantities are calculated and visualized
as a function of time: (i) temperatures of gases in both parts of the container and
the difference between them and (ii) the change of entropy of the system. We
assume that these quantities are well defined as far as they are subject to suffi-
ciently small fluctuations so their main trend may be seen (which is particularly
important for the change of the entropy; c.f. Figs.1 and 2).

The current temperature of the gas in each part of the container, TL,R
m , in

the mth time-step (m = 0, 1, 2, . . . ,) is defined as proportional to the current
average kinetic energy of particles in the given part, which is consistent with
definitions (1) and (3)

kBTL
m =

1
NL

NL∑

j=1

εj
m,
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kBTR
m =

1
NR

NL+NR∑

j=NL+1

εj
m. (9)

Similarly, for the diathermic wall we define

kBTw
m = εw

m. (10)

However, the current temperature of the diathermic wall doesn’t systemat-
ically change and can only fluctuate (which can be easily seen by looking for
the corresponding data presented during the computer experiment). This can be
understood if we remember that the total energy E of the system is preserved
during its evolution; i.e., for any time-step m(= 0, 1, 2, . . . , ) we can write

E =
N∑

j=1

εj
m + εw

m = const. (11)

Particularly, for m → ∞ we obtain (by using (9) and (10))

NLTL
0 + NRTR

0 + Tw
0 = NLTL

∞ + NRTR
∞ + Tw

∞. (12)

Note that extension of (12) to a more general description where the diathermic
wall consists of Nw(> 1) particles (then temperatures Tw

l , l = m, 0,∞, should
by replaced by NwTw

l ) doesn’t change the final result (15) given below.
Thermodynamic equilibrium is characterized by equality of all (final) tem-

peratures, i.e.,

TL
∞ = TR

∞ = Tw
∞ = T∞. (13)

Moreover, we assume for simplicity the condition of temperature neutrality of
the diathermic wall which requires

Tw
m = T∞, m = 0, 1, 2, . . . , (14)

and leads, by using (12), (13) and (14), to expression

Tw
0 = T∞ =

NL

N
TL

0 +
NR

N
TR

0 , (15)

which is consistent with definition (2).
When the simulation begin, the temperatures of the left and right parts

(which, in general, are initially different) tend to the same value, subject only
to small fluctuations (this is already obeyed for the number of particles greater
than several dozen in each part of the container) while the temperature of the
diathermic wall fluctuates, sometimes even strongly, since this wall is treated as
an additional particle and not a very massive one.

As it is seen from Figs.1 and 2 the dynamic table enclosed there concerns:
(1) temporal temperatures of both parts of the container LTemp ≡ TL

m and
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RTemp ≡ TR
m , where m = 0, 1, 2, . . ., (2) temporal temperature of the diathermic

wall WTemp ≡ Tw
m, (3) temporal temperature difference ∆T ≡ ∆Tm = TL

m−TR
m ,

(4) the entropy difference ∆S ≡ ∆Sm = Sm−S0, and 5) time ≡ m∆t. Hence, we
can observe that the fluctuations of temperatures of both parts of the container
are relatively small opposite to the temperature of the diathermic wall (as the
latter is considered as an additional particle and not a very massive wall).

It should be emphasized that the difference between temperatures, ∆Tm,
of both parts of the container obeys well known the empirical Newton law of
cooling,

∆T (t) = ∆T (0) exp(−t/τ), (16)

where τ is the relaxation time depending on thermodynamic parameters of the
system. This law is obeyd by real substances but in our numerical experiment
we are able to imitate it by using ideal gas with an additional mechanism of
spatial mixing of particles.

The law of entropy increase. By using the general definition of the change of
entropy we can write

dSm =
dEL

m

TL
m

+
dEw

m

Tw
m

+
dER

m

TR
m

, (17)

where dSm = Sm+1 −Sm is the change of entropy within time interval ∆t, while
dEj

m = Ej
m+1 − Ej

m (j = L, R, w) is the energy change (within the same time
interval) of the left and right parts of the container, and the diathermic wall,
respectively.

As it is seen in Figs.1 and 2, the entropy difference ∆Sm strongly fluctuates
which is caused not only by the strong fluctuations of the temperature of the
diathermic wall but also by the strong fluctuations of its energy change as well
as energy changes of the ideal gas particles interacting with diathermic wall.
Nevertheless, the general trend of entropy increase is still well seen even for our
small system being far from equilibrium. This is an important result pointing to
the extended range of validity of the law of entropy increase.

4 Concluding Remarks

In this paper we reconsidered the ideal gas model extending its possibility to
simulate empirical phenomena and confirming its usefulness for educational
purposes both in statistical mechanics and thermodynamics. This was possible
thanks to that two mechanisms of mixing were exploited:

(i) Random scattering of particles at rough walls.
(ii) Local energy equipartition at the diathermic wall.

There are several conlusions having both educational and professional character.

(1) By using the real-time computer experiment it was possible to currently
visualize both the ’macroscopic’ heat transfer process and simultaneously its
microscopic realization.
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(2) By using this dual visualization we pointed out how energy is transferred in
a heating manner.

(3) Within this computer experiment we presented the trend of temperatures to
equilize when subsystems come into the thermal contact.

(4) In this experiment we discovered that the temperature difference obeys the
empirical Newton’s law of cooling.

(5) In this experiment we observed both the entropy increase and the entropy
fluctuations as well as the elementary entropy change due to entropy changes
of both parts of the container and the diathermic wall.

We hope that the considered computer experiment will be an example that
stimulates students to conduct their own experimentations for deeper under-
standing of physical phenomena.
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