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Abstract. We study a classical firing squad synchronization problem
for a large scale of one- and two-dimensional cellular automata hav-
ing 1-bit inter-cell communications (CAi—_pit). First, it is shown that
there exists a one-dimensional CA;_p;; that can synchronize n cells with
the general on the kth cell in n + max(k,n — k + 1) steps, where the
performance is two steps larger than the optimum one that was devel-
oped for O(1)-bit communication model. Next, we give a two-dimensional
CA;_bis which can synchronize any n X n square and m X n rectangu-
lar arrays in 2n — 1 and m + n + max(m,n) steps, respectively. Lastly,
we propose a generalized synchronization algorithm that operates in
m +n + maz(r + s,m+n —r —s) + O(1) steps on two-dimensional
m X n rectangular arrays with the general located at an arbitrary po-
sition (r, s) of the array, where 1 < r < m and 1 < s < n. The time
complexities for the first three algorithms developed are one to four steps
larger than optimum ones proposed for O(1)-bit communication models.
We show that there still exist several new interesting synchronization
algorithms on CA;_p;; although more than 40 years have passed since
the development of the problem.

1 Introduction

In recent years cellular automata (CA) have been establishing increasing inter-
ests in the study of modeling real phenomena occurring in biology, chemistry,
ecology, economy, geology, mechanical engineering, medicine, physics, sociology,
public traffic, etc. Cellular automata are considered to be a good model of com-
plex systems in which an infinite one-dimensional array of finite state machines
(cells) updates itself in synchronous manner according to a uniform local rule.

In this paper, we study a famous firing squad synchronization problem on a
newly introduced 1-bit CA model for which solution gives a finite-state protocol
for synchronizing a large scale of cellular automata. The synchronization for cel-
lular automata has been known as the firing squad synchronization problem since
its development, where it was originally proposed by J. Myhill to synchronize all
parts of self-reproducing cellular automata [9]. The firing squad synchronization
problem has been studied extensively in more than 40 years [1-19].

An O(1)-bit communication model is a conventional CA where the amount of
communication bits exchanged at one step between neighboring cells is assumed
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to be O(1)-bit, however, such bit-information exchanged between inter-cells has
been hidden behind the definition of conventional automata-theoretic finite state
descriptions. On the other hand, a 1-bit inter-cell communication model studied
in this paper is a new CA whose inter-cell communication is restricted to 1-bit.
We call the model 1-bit CA in short. The number of internal states of the 1-
bit CA is assumed to be finite in a usual way. The next state of each cell is
determined by the present state of itself and two binary 1-bit inputs from its
left and right neighbor cells. Thus the 1-bit CA can be thought to be one of the
most powerless and simplest models in a variety of CAs.

In the next section 2, we define a (generalized) firing squad synchronization
problem on the cellular automata whose inter-cell communication is restricted to
1-bit. In section 3, we propose a new generalized synchronization algorithm that
operates in n+max(k, n—k+1) steps for firing n cells on 1-D CA; _pit, where the
general is located on the kth cell from the left end. The algorithm is a generalized
extension of Mazoyer [6] and Nishimura, Sogabe and Umeo [11]. In section 4,
three 1-bit implementations of synchronization algorithms for two-dimensional
square and rectangular arrays will be given. Due to the space available, we omit
the details of the proofs of theorems given below.
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Fig. 1. One-dimensional cellular automaton having 1-bit inter-cell communication
links.

2 Firing Squad Synchronization Problem on CA;_y;;

The firing squad synchronization problem is formalized in terms of the model
of cellular automata. Fig. 1 shows a finite one-dimensional (1-D) cellular array
consisting of n cells. Each cell is an identical (except the end cells) finite state
automaton.

The array operates in lock-step mode in such a way that the next state of
each cell (except both end cells) is determined by both its own present state and
the present binary inputs of its right and left neighbors. Let k be any integer
such that 1 < k < n. All cells (soldiers), except the kth cell Cy, from the left end,
are initially in the quiescent state at time ¢t = 0 with the property that the next
state of a quiescent cell with quiescent neighbors is the quiescent state again. At
time t = 0 the general cell Ci is in fire-when-ready state that is an initiation
signal to the array. The generalized firing squad synchronization problem [7, 13,
18] is stated as follows:

Given an array of n identical cellular automata, including a general on the
kth cell which is activated at time t = 0, we want to give the description (state
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set and next-state function) of the automata so that, at some future time, all the
cells will simultaneously and, for the first time, enter a special firing state. The
set of states must be independent of n. The tricky part of the problem is that
the same kind of soldier with a fixed number of states is required to synchronize,
regardless of the length n of the array.

3 A Generalized Synchronization Algorithm on 1-D
Arrays

Nishimura, Sogabe and Umeo[11] designed an optimum-step firing squad syn-
chronization algorithm on CAj_pit, where 2n — 2 steps are required for synchro-
nizing n cells on 1-D array and the general is located at the left end of the array.
The algorithm, that is referred to as NSU algorithm, is stated as follows:
[Theorem 1] [11] There exists a CA1_pit which can synchronize n cells with the
general on the left end in 2n — 2 steps. The CA;_pi¢ constructed has 78 internal
states and 208 transition rules.

The generalized synchronization algorithm that we are going to design is
based on the NSU algorithm. In our construction additional two steps are re-
quired for transmitting a signal to the nearest end, where the signal has been
kept for min(2k — 2, 2n — 2k — 2) steps by the general cell.

In Fig. 2, we show snapshots of the generalized firing synchronization algo-
rithm on 24 cells with a general on Cg. Small right and left black triangles, »
and <, shown in the figure, indicate a 1-bit signal transfer in the right or left
direction between neighbor cells. A symbol in a cell shows its internal state. The
total number of internal states and transition rules of the CA;_p;; realized on
a computer is 282 and 721, respectively. We checked the validity of the rule set
for arrays of length n = 2 to 100 at any position of the general. Thus we have:
[Theorem 2] There exists a CA;—pit Which can synchronize n cells in n+max(k, n—
k +1) steps, where k is any integer such that 1 < k < n and a general is located
on the kth cell from the left end of the array.

4 Synchronization Algorithms on 2-D Arrays

In this section we develop some synchronization algorithms for 2-D 1-bit inter-
cell communication CA models. Fig. 3 shows a finite two-dimensional cellular
array consisting of m x n cells. A cell on (i, j) is denoted by C; ;. Each cell is an
identical (except the border cells) finite state automaton.

The array operates in lock-step mode in such a way that the next state of
each cell (except border cells) is determined by both its own present state and the
present binary inputs from its north, south, east and west neighbors. All cells,
except the general cell, are initially in the quiescent state with the property that
the next state of a quiescent cell with quiescent neighbors is the quiescent state
again. Several 2-D synchronization algorithms and their implementations have
been presented in Beyer [2], Grasselli [4], Shinar [12], Szwerinski [13] and Torre,
Napoli and Parente [14] for O(1)-bit communication models.
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Fig. 3. Two-dimensional cellular automaton.
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Fig. 2. Snapshots of the generalized 1-bit firing squad synchronization algorithm op-
erating on 24 cells with a general on Cs.
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Fig. 4. Snapshots of our (2n — 1)-step square firing squad synchronization algorithm
with the general on the north west corner.

4.1 Synchronization Algorithm on Square Arrays

We present a new synchronization algorithm that runs in (2n —1) steps on n xn
square arrays. Our algorithm is one step slower than that of Shinahr [13] for
O(1)-bit communication model and operates as follows. By dividing the entire
square array into n L-shaped 1-D arrays such that the length of the ith L is
2n —2i +1 (1 <i < n), we treat the square firing as n independent 1-D firings
with the general located at the center cell. On the ith L, a general is generated
at C;; at time ¢t = 27 — 1, and the general initiates the horizontal and vertical
firings on the row and column arrays. In our construction, we apply the previous
NSU algorithm [12] for each row and column firing. The array fires in optimum
timet=2i—1+2(n—i+1)—2=2n-1.

We have tested our transition rule set on squares of size 2 x 2 to 1000 X
1000. The total number of internal states and transition rules of the CAj_pi¢
realized on a computer is 127 and 405, respectively. Figure 4 shows snapshots of
configurations of our 127-state synchronization algorithm running on a square
of size 8 x 8. Thus we have:

[Theorem 3] There exists a 2-D CA;_pi; which can synchronize n x n cells in
2n — 1 steps.

4.2 Synchronization Algorithm on Rectangular Arrays

The generalized firing squad synchronization algorithm presented in [Theorem
2] can be applied to the problem of synchronizing rectangular arrays with the
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Fig. 5. Snapshots of our rectangular firing squad synchronization algorithm with the
general at the north-west corner.

general at the north-west corner. The configuration of the generalized firing on
1-D arrays can be mapped on 2-D array.

The rectangular array is regarded as min(m,n) L-shaped 1-D arrays, where
they are synchronized independently using the generalized firing squad synchro-
nization algorithm. We have implemented the algorithm on a computer. In Fig.
5, we show snapshots of the synchronization process on 5 x 8 rectangular array.
The total number of internal states and transition rules of the CAj_p;; realized
on a computer are 862 and 2217, respectively. Thus we have:

[Theorem 4] There exists a 2-D CA;_pi; which can synchronize m x n rectan-
gular arrays in m + n + max(m,n) steps.

4.3 Generalized Synchronization Algorithm on 2-D Rectangular
Arrays

In this subsection, we study the generalized synchronization algorithm on rect-
angular arrays. Let r, s be any integer such that 1 <r <m, 1 < s < n. At time
t = 0 the general cell C, ; is in fire-when-ready state that is an initiation signal to
the array. Before presenting the 1-bit algorithm, we show a simple and efficient
mapping scheme developed for O(1)-bit CA model that embeds any generalized
one-dimensional synchronization algorithms onto two-dimensional arrays [16].

Now we consider a 2-D array of size m x n. We divide mn cells into m+n—1
groups gk, 1 < k <m+n —1, defined as follows;

g ={Cisli -+ (G -1)=k-1}
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That is,
g1 ={C11}, 92 = {C1,2,Ca,1}, 93 = {C1,3,C22,C31}, - - -, Gmtn—1 = {Cmn}.

Let M be any one-dimensional CA;_p; that fires £ cells in T'(¢, k) steps,
where the general is on Cg. We assume that M has m +n —1 cells. We consider
the one-to-one correspondence between the ith group g; and the ith cell C; on
M such that g; < C;, where 1 <1 < m+n—1. We can construct a 2-D CA;_p;t
N so that all cells in g; simulates the ith cell C; in real-time and N can fire any
m x n arrays with the general C, s at time t = T(m +n — 1,r + s — 1) if and
only if M fires 1-D arrays of length m +n — 1 with the general on C,4s1 at
timet =T(m+n—1,7r+s—1).

Based on the generalized 1-D algorithm given in [Theorem 2], we get the
following 2-D generalized synchronization algorithm that fires in T'(m,n,r,s)
steps given below. The total number of internal states and transition rules of
the CAj_p;; realized on a computer is 300 and 2333, respectively. In Fig. 6 we
show snapshots of the 300-state generalized synchronization algorithm running
on rectangular array of size 5 x 8 with the general on Cs 4. Thus we have:
[Theorem 5] There exists a 2-D 1-bit communication CAj_piz that can syn-
chronize any m x n rectangular arrays in T'(m,n,r,s) steps, where (r,s) is an
arbitrary initial position of the general and T(m,n,, s) is defined as follows:

m+n—2+max(r+s,m+n—r—s+2)
if s=1,r=1 or
s$=n,r=m or
2<r<n-1,2<s<m-1
m+n+max(r+s,m+n—r—s)
if 2<s<n-1,r=1 or
T(m,n,r,s)= s=1,2<r<m-—1
m+n—2+max(r+s,m+n—r—s+4)
if 2<s<n-—-1,r=m or
s=n,2<r<m-1
m+n+max(r+s,m+n—r—s+2)
if s=n,r=1 or
. s=1,r=m

Szwerinski [14] proposed an optimum-time generalized 2-D firing algorithm
with 25600 internal states that fires any mxn array in m+n-+max(m, n)—min(r, m—
r+1)—min(s,n—s+1) — 1 steps. Our 2-D generalized synchronization algorithm
is relatively larger than the optimum one proposed by Szwerinski [14], however,
the number of internal states required for the firing is the smallest known at
present.

5 Conclusion

We have proposed several new generalized synchronization algorithms for one-
and two-dimensional cellular arrays having 1-bit inter-cell communication and
implemented them on a computer. Most of the algorithms proposed are one
to four steps larger than optimum ones proposed for O(1)-bit communication
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model. We are convinced that there still exist interesting new synchronization
algorithms, although more than 40 years have passed since the development of
the problem.

AEBRNE

Fig. 6. Snapshots of our generalized rectangular firing squad synchronization algorithm
operating for an array of size 5 x 8 with the general on C3,4.
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