
Z. Zhao1, G.D. van Albada1, A. Tirado-Ramos1, K. Zajac2, and P.M.A. Sloot1

1 Section Computational Science
University of Amsterdam

Kruislaan 403, 1098SJ, Amsterdam, the Netherlands
fzhiming, dick, alfredo, slootg@science.uva.nl

http://www.science.uva.nl/research/scs
2 Institute of Computer Science, AGH, al.Mickiewicza 30,

30-059 Krakÿow, Poland
kzajac@uci.agh.edu.pl

Abstract. In Problem Solving Environments (PSE), Interactive Sim-
ulation Systems (ISS) are an important interactive mode for studying
complex scientiþc problems. But eÆcient and user-friendly tools for de-
signing interactive experiments lack in many PSEs. Mechanisms, such as
data ýow and control ýow diagrams, adopted in many current PSEs to
specify the component interconnection and interaction scenarios are de-
rived mostly from a data processing perspective, and are not suitable for
designing user-centred interactions. ISS-Conductor is an agent-oriented
architecture for ISS components. It uses an extended þnite state ma-
chine to model the run-time behaviour of a component, and adopts þrst
order logic to represent the interaction constraints between components
and to implement them in the knowledge bases of agents. ISS-Conductor
separates the basic computational functions of a component from its run-
time behaviour controls, and provides a high-level interface for users to
design interaction scenarios. In this paper, we prototype a user-friendly
tool for using components based on ISS-Conductor to design interactive
experiments.

1 Introduction

A Problem Solving Environment (PSE) is a complex and integrated computa-
tional environment that provides all kinds of facilities needed to solve a given
class of problems [1]. In industrial design and scientiÿc research, PSEs have
proved themselves by providing solutions to complex problems [2{4]. In general,
a PSE consists of a set of functional components or tools for its target problem
domain, a user interface for designing and performing experiments, and a run-
time environment for computation and for managing resources. A solver for a
complex domain problem is decomposed into a number of functional components
or tools, which are then interconnected and executed under control of the PSE.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2657, pp. 679−688, 2003.
 Springer-Verlag Berlin Heidelberg 2003

ISS-Studio: A Prototype for a User-Friendly Tool
for Designing Interactive Experiments in Problem

Solving Environments



In PSEs, trial solutions are often called experiments. In many current PSEs, data
ÿow and control ÿow are the mechanisms adopted to specify the interconnec-
tion between functional components. In the data ÿow mechanism, data pipelines
depict the interconnection between the data channels of components are used
to represent the dependencies between components. Processing and transferring
data objects are basic interactions between components, in systems like SciRun
[5]. In the control ÿow mechanism, interaction and execution dependencies be-
tween components are represented by a sequence of actions or tasks that should
be performed by components. Workÿow system is a typical example, such as
in DISKWorld [6]. In many control ÿow systems, data state information is also
used as a complement for interaction controls.

In PSEs, human in the loop experiments are increasingly important for study-
ing complex problem spaces. Interactive Simulation Systems (ISS), which couple
simulation modules and visualisation tools together, and include a human user
in the run-time loop to manipulate simulation parameters are an example. For
complex problems, sophisticated interactions between simulators and interactive
visualisation tools are often needed. However, in the current data ÿow based
mechanisms, only data processing related interaction controls can be speciþed.
These are not suÆcient for handling synchronisation between parallel compo-
nents and human interactions. In the control ÿow mechanisms, tasks sequences
are predeþned, but user-centred and event-driven interactions are not easily in-
cluded. A ÿexible mechanism for describing the interconnection of components
is needed in current PSEs, and it should be supported by a user-friendly tool.

In this paper, we continue our work on an agent-oriented middleware for
constructing Interactive Simulation Systems [7]. First, we will review our earlier
work on an agent-oriented ISS architecture, and then we will analyse the design
requirements for a user-friendly tool for constructing interactive experiments.
After that we will use an example discuss how such tool should be implemented.

In our earlier work, we have invented an agent-oriented software architecture,
Interactive Simulation System Conductor (ISS-Conductor), for implementing
and interconnecting distributed interactive simulation components [7, 8]. In ISS-
Conductor, we use a layered interconnection mechanism: at the lower-level, mes-
sages between modules are carried by Communication Agents (ComAs), and at
the higher-level, application logic is controlled by Module Agents (MAs). Compo-

nents are major units in an ISS application. In ISS-Conductor, each component
contains two parts: an Actor and a Conductor, both of which contain a ComA.
The Actor realises computational functions of a component, and the Conductor
contains a MA for controlling run-time behaviour of the component. At run-
time, the Actor and Conductor of a component are separate processes, which
communicate with each other and the other components via a software bus. The

680 Z. Zhao et al.

2 ISS-Studio: Design Overview

2.1 Earlier Work: An Agent Oriented Framework



software bus is normally the run-time infrastructure of the communication mid-
dleware adopted by the ComAs. The interaction scenarios between modules are
represented as knowledge bases, which can be bound to MAs at run-time. Fig.
1 depicts the architecture.

Fig. 1. ISS-Conductor components and their interconnection.

In the current implementation of ISS-Conductor, the Run Time Infrastruc-
ture (RTI) 1.3NGV5 of High Level Architecture (HLA) [9] is the communication
interface between ComAs, and Amzi Prolog [10] is used to implement the rea-
soning engines in the MAs. ISS-Conductor is part of Polder [11], a computing
environment built by the University of Amsterdam. In Polder, ISS-Conductor
is the emerging framework architecture for Interactive Simulation Systems. In
the rest of this paper, we will describe a prototype of a user-friendly tool, called
ISS-Studio, for developing ISS by using ISS-Conductor components.

ISS-Studio aims to be a user-friendly tool for scientists to design interactive ISS-
Conductor experiments. It must support diÿerent conþgurations for experiments:
multiple simulation and interactive visualisation modules can be combined, and
users can be geographically distributed. ISS-Studio should be user-friendly, ýex-
ible, easy to use, and robust. It should provide an integrated environment, which
covers most basic procedures for designing and executing experiments, such as
problem analysis, scenario design and execution management. It should be an
open environment; components can be shared between organisations. For porta-
bility, ISS-Studio should support most popular computational infrastructures
for executing experiments. Decision support for experiments should also be pro-
vided.

681ISS-Studio: A Prototype for a User-Friendly Tool

2.2 Functional Requirements for ISS-Studio



Managing components, designing experiments, and executing experiments are
the three main functionalities to be provided by ISS-Studio. Fig. 2 shows the ba-
sic module-diagram of ISS-Studio. The component management sub-system pro-
vides an interface for managing software components, such as storing, querying,
outsourcing, and updating. The experiment management sub-system supports
basic procedures to design and validate experiments. Iterative development mode
is a popular and practical approach for designing and implementing software ap-
plications. The steps depicted in Fig. 3 will be considered as basic procedures
for experiment development life cycle in ISS-Studio. The execution management

sub-system executes an experiment on the computational infrastructure. The
current implementation of ISS-Conductor is based on HLA. ISS-Conductor is
also being integrated with Globus [12] to provide grid access. The interaction
between RTI and Globus is one of our considerations for the migration, which is
discussed in a separate paper [13]. This sub-system provides interface to execute
experiments and monitor their resource consumption and progresses.

Fig. 2. Functional modules in ISS-Studio.

3 Design

Components are stored in a repository, which provides an interface for searching,
browsing and updating. To share software resources with other organisations, the
repository will also provide an interface for outsourcing and insourcing compo-
nents based on a service architecture.

682 Z. Zhao et al.

2.3 Basic FunctionalöModules

3.1 Component Management



Fig. 3. An iterative model for designing interactive experiments in PSEs.

In the repository, each component has an actor, a conductor and an interface
speciÿcation. In the interface speciÿcation, actions and states of the component,
data object interface, execution requirements, and the version of the implemen-
tation are described. XML [14] is considered as basic language for the speciÿca-
tion. ISS-Studio should provide an interface for incorporating normal programs
into the ISS-Conductor architecture, for updating available components, and for
reÿning their interface speciÿcation.

The experiment management sub-system assists users at each main step of the
experiment life cycle depicted in Fig. 3. To help users to build a solution and
map it onto suitable components, a decision support agent is desirable. The
decision support agent can search the experiment repository and ÿnd similar
experiments as examples for the user, and search for proper components. If no
proper components are available in the local repository, the decision support
agent should contact the repositories of the other PSEs.

Considering components are the major units in a PSE, composing interac-
tion scenarios between these components becomes an important step in designing
experiments. The extended ÿnite state machine [7] is adopted as the basic mech-
anism in ISS-Conductor to model run-time behaviour and represent interaction
scenarios. Therefore, an interaction sequence chart will be a suitable visual inter-
face for specifying interaction cases of experiments. An experiment may contain
multiple scenarios; composing global scenario-switch and detailed interaction
sequences in each scenario in a hierarchical way will be necessary.

From the sequence chart, dependencies between components can be automat-
ically generated and represented in Prolog, which is the representation language
of the knowledge bases of the MAs. To validate the scenario, a simulation tool
will be provided. This simulation tool will execute all knowledge bases in a
multi-threaded way, and track the run-time behaviour of all modules.

Finally, an executable of the experiment can be generated. It can be executed
both inside and outside ISS-Studio. This sub-system will also include a documen-

683ISS-Studio: A Prototype for a User-Friendly Tool

3.2 Experiment Management



tation management tool to generate and maintain all necessary documentation
for an experiment.

The execution management sub-system provides an interface for users to execute
experiments. The interface will be able to interact with job scheduling tools,
such as PBS [15], to submit computing jobs and monitor the progress of the
execution. In this sub-system, general tools for visualising experiment federation,
and resource consumption, like software traÆc, will be provided. During each
execution, log ÿles will be maintained.

4 Prototype

In this section, we use an example to discuss how ISS-Studio will be implemented
to support interactive experiment design. In surgery, verifying an operation plan
is a diÆcult task, even for expert surgeons. Computer simulation may help a
surgeon to validate his treatment, but it is almost impossible to let a computer
simulate all possible solutions. In an interactive experiment, a human expert is
put into the simulation cycle to let him apply his expertise to conÿne the problem
space. For complex cases, more than one expert can attend the experiment at
same time, and they can be at diþerent locations. In the experiment, a simulation
program on a parallel computer system simulates the patient's blood ýow. One
or more visualisation modules present the simulated results together with the
body's geometrical information obtained from a medical scanner (such as CT or
MRI). The visualisation and interaction modules can be executed in immersive
virtual environments such as (CAVE) [16] or desktops, from which a user can
study the results of a trial treatment, and modify it when necessary [17, 18].
The simulation and interactive visualisation modules are connected through a
high performance network. Due to the massive computation of the simulation,
the experiment also includes a storage module, which can store intermediate
simulation results and allow users to browse their earlier interactions.

The component composer tool should provide a direct manipulation GUI to edit
elements of a component, such as the action set of the actor, the knowledge base
of the conductor and the interface speciÿcation of the component. The interface
speciÿcation can be automatically adapted when the user changes the action
deÿnition of the component. Fig. 4 shows an example interface.

Table. 1 speciÿes basic scenarios of the experiment. The scenario design tool
provides a two-level view for specifying scenarios. At the top level, a global
scenario-switch graph is designed, and each scenario can be zoomed into a de-
tailed lower level. At the lower level, popup windows are provided to assist

684 Z. Zhao et al.

3.3 Execution Management

4.1 An Example

4.2 Components and Scenario Design



Fig. 4. The user interface of Component Composer.

Table 1. Scenarios deÿnition of the experiment.

Scenario 1: live Visualisation

Involved components: Scenario speciÿcation:

LB Blood Fluid Sim LB Blood Fluid Sim computes and regularly updates a data object,

called trial object ;

VRE VRE and Desktop IV visualise trial object and refresh their

Desktop IV visualisation pipelines when trial object has been updated;

Storage Storage stores trial object to disk when received a request.

Scenario 2: making Trial Operation

Involved components: Scenario speciÿcation:

VRE VRE generates and updates an object, called plan Object ;

Only VRE is allowed to update plan Object ;

Desktop IV VRE and Desktop IV visualise plan object, and refresh their

visualisation pipelines when plan object has been updated;

LB Blood Fluid Sim LB Blood Fluid Sim adapts its computing parameters when received

plan Object.

Scenario 3: review Experiment

Involved components: Scenario speciÿcation:

Storage Storage generates and updates a object, called history Object,

when received a request;

VRE VRE and Desktop IV visualise history Object, and refresh their

Desktop IV visualisation pipelines when history Object has been updated;

Only VRE is allowed to send requests to Storage to ask for updating

history Object.

685ISS-Studio: A Prototype for a User-Friendly Tool



users to select states and actions from a component and deÿne its transition

constraints with the state of the other components. Fig. 5 depicts a prototype

GUI. When the user selects scenario validation from the interface, the scenario

will be evaluated using a simulation program. The visualisation of the scenario

simulation helps the user to validate his scenario design.

Fig. 5. The user interface of visually scenario designing.

Once the experiment has been designed, it can be executed. The execution tool

assists users to execute the experiment on available computational resources.

By providing the execution tool with a web-based interface, it can be linked

an eventual portal-based interface of the PSE to support remote access of the

experiment.

In PSEs, ISSs are becoming an important mode for testing trial solutions to

complex problems. A user-friendly tool is needed for scientists to eÆciently de-

sign the human in the loop experiments. In this paper, we have prototyped such

a tool for constructing ISS. First, we reviewed our earlier work, ISS-Conductor,

686 Z. Zhao et al.

4.3 Execution Management

5 Discussion and Conclusion



an agent oriented architecture for ISSs. Then we proposed a tool, ISS-Studio,

for visually designing interactive experiments. ISS-Studio has not been fully im-

plemented yet, but by prototyping the key features, we can already draw some

conclusions:

1. The layered interconnection mechanism adopted in ISS-Conductor allows

developers to specify application logic at an independent level. It provides

possibilities to design experiment scenarios by using a visual interface.

2. In ISS-Conductor run-time behaviour of the system is modelled as an ex-

tended ÿnite state machine, which can be visually represented by mechanisms

such as interaction sequence chart. The conditions in the sequence chart can

be automatically translated into ÿrst order logic to generate knowledge bases

for MAs.

As a next step, we will implement the ISS-Studio and include it in an exist-

ing PSE. We will also work on version 2 of ISS-Conductor which will support

computational grids resource access.

This research is partly supported by the European research project \CrossGrid".

References

1. John R. Rice Efstratios Gallopoulos, Elias Houstis. Computer as thinker doer:

Problem-solving environments for computational science. IEEE Computational
Science and Engineering, 2:13{23, 1994.

2. Marc Vass, Cliÿord A. Shaÿer, and John J. Tyson. The jigcell model builder:

A tool for modeling intra-cellular regulatory networks. In Naren Ramakrishnan,
Layne T. Watson, Submitted for review to HPC 2003, 2003.

3. L. Boloni, D.C. Marinescu, J.R. Rice, P. Tsompanopoulou, and E.A. Vavalis. Agent

based scientiþc simulation and modeling. Concurrency: practice and experience,
12:845{861, 2000.

4. Geoÿrey Fox, Sung-Hoon Ko, Marlon Pierce, Ozgur Balsoy, Jake Kim, Sangmi

Lee, Kangseok Kim, Sangyoon Oh, Xi Rao, Mustafa Varank, Hasan Bulut, Gurhan

Gunduz, Xiaohong Qiu, Shrideep Pallickara, Ahmet Uyar, and Choonhan Youn.

Grid services for earthquake science. Concurrency: practice and experience, 14:371{
393, 2002.

5. C. Johnson, S. Parker, and D. Weinstein. Large-scale computational science ap-

plications using the scirun problem solving environment. In Proceedings of Super-
computer, 2000.

6. K. A. Hawick, H. A. James, and P. D. Coddington. A reconþgurable component-

based problem solving environment. In Proc. of Hawaii International Conference
on System Sciences (HICSS-34), 2000.

687ISS-Studio: A Prototype for a User-Friendly Tool

6 Future Work

Acknowledgements.



7. Z. Zhao, R.G. Belleman, G.D. van Albada, and P.M.A. Sloot. State update and
sce-nario switch in an agent based solution to constructing interactive simulation
systems. In Proceedings of the Communication Networks and Distributed Sys-
tems Model-ing and Simulation Conference, pages 3{10, San Anto-nio, US, January
2002.

8. Z. Zhao, R.G. Belleman, G.D. van Albada, and P.M.A. Sloot. Ag-ive an agent
based solution to constructing interactive simulation systems. In Proceedings of
the second inter-action conference of computational science (ICCS02), Amsterdam,
NL, April 2002.

9. Defence Modelling and Simulation OÆce (DMSO). High level architecture (hla)
homepage. In http://hla.dmso.mil/, 2002.

10. Amzi Inc. Amzi prolog homepage. In http://www.amzi.com, 2002.
11. K.A. Iskra, R.G. Belleman, G.D. van Albada, J. Santoso, P.M.A. Sloot, H.E. Bal,

H.J.W. Spoelder, and M. Bubak. The polder computing environment, a system for
interactive distributed simulation. Concurrency and Computation: Practice and
Experience((Special Issue on Grid Computing Environments) in press), 2002.

12. The globus project homepage. In http://www.globus.org/, 2002.
13. Katarzyna Zajac, Alfredo Tirado-Ramos, Zhiming Zhao, Peter Sloot, and Marian

Bubak. Grid services for hla-based distributed simulation frameworks. In First
European Across Grids Conference, San Deigo, US, 2003.

14. World Wide Web Consortium (W3C). Extensible markup language (xml). In
http://www.w3.org/, 2002.

15. Veridian System. Portable batch system homepage. In http://www.openpbs.org/,
2002.

16. C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-screen projection-based
virtual reality: The design and implementation of the cave. In SIGGRAPH '93
Computer Graphics Conference, pages 135{142, 1993.

17. R.G. Belleman, J.A. Kaandorp, D. Dijkman, and P.M.A. Sloot. Geoprove: Geomet-
ric probes for virtual environments. In proceedings of High-Performance Computing
and Networking (HPCN Europe '99), pages 817{827, Amsterdam, The Nether-
lands, in series Lecture Notes in Computer Science. Springer-Verlag, Berlin, ISBN
3-540-65821-1, 1999.

18. R.G. Belleman and P.M.A. Sloot. Simulated vascular reconstruction in a virtual
operating theatre. In Computer Assisted Radiology and Surgery (Excerpta Medica,
International Congress Series 1230), pages 938{944, Elsevier Science B.V., Berlin,
Germany, 2001.

688 Z. Zhao et al.


	1 Introduction
	2 ISS-Studio: Design Overview
	2.1 Earlier Work: An Agent Oriented Framework
	2.2 Functional Requirements for ISS-Studio

	3 Design
	3.1 Component Management
	3.2 Experiment Management
	3.3 Execution Management

	4 Prototype
	4.1 An Example
	4.2 Components and Scenario Design
	4.3 Execution Management

	5 Discussion and Conclusion
	6 Future Work

