
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2657, pp. 737–746, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Error Correcting Codes with Mathematica

Igor Gashkov

Karlstad University, Department of Engineering Sciences, Physics and Mathematics 65188
Karlstad Sweden

Igor.Gachkov@kau.se

Abstract. The author (with Kenneth Hulth) got the idea to develop a non-
standard, methodical-oriented course where hands-on sessions could add
substantial understanding in the introduction of mentioned mathematical
concepts. The package in MATHEMATICA in the field ”Coding Theory” was
developed for course “ Error-Correcting codes with MATHEMATICA “, for
students on advanced undergraduate level.

1 Introduction

Applications of the theories of Error-Correcting Codes have increased tremendously
in recent years. Thus it is hardly possible today to imagine engineers working with
data transmission and related fields without basic knowledge of coding/decoding of
information. The possibilities of quantifying information with electronic equipment
are developing rapidly, supplying the specialists working in communication theory
with more sophisticated methods for circuit realization of concrete algorithms in
Coding Theory. During preceding years courses in Coding Theory have been
considered only for students on postgraduate level. This is due to the complexity of
the mathematical methods used in most codes, such as results from abstract algebra
including linear spaces over Galois Fields. With the introduction of computers and
computer algebra the methods can be fairly well illustrated. The author has developed
a course, ‘Coding Theory in MATHEMATICA’, using the wide range of capabilities
of MATHEMATICA. The course was given at Jönköping University and Karlstad
University, Sweden, on undergraduate level with a minimum of prerequisites. The
hands on sessions were based on a package of application programs/algorithms,
developed to illustrate the mathematical constructions, used in coding theory to
encode and decode information. We will present some of our hands-on materials,
which are used to construct Block Codes with means of algebraic methods. We first
present the basic concepts of coding theory, such as, hamming distance, generator and
parity check matrices, binary linear codes and group codes. We will then use some
basic results from matrix algebra and linear spaces to construct code words from the
information we want to send. Due to noise in the channel of transmission the received
words may differ from the code words which were sent, and the very aim of coding
theory is to detect and correct possible errors. In the linear codes (the code words
having group structure) the encoding is accomplished by multiplying the information
word (seen as a vector) with a generator matrix, whereas the decoding process starts
with multiplication of the received word with the parity check matrix. Within the

mailto:Igor.Gachkov@kau.se

738 I. Gashkov

cyclic codes it is preferable to work with generator- and parity check polynomials
instead of matrices, and the code words here form a polynomial ring. With algebraic
extensions of the field Zp by irreducible (over Zp) polynomials, the final step is taken
into the Bose-Chaudhuri-Hocquenghem codes (BCH codes), which have rich
algebraic, structure. The application programs in the package support the learning
processes by illustrating the algorithms in the mathematical constructions. The rich
variety of manipulations in the algebraic structures, the possibility to vary the
parameters in specific cases and the simplicity to construct concrete codes with
MATHEMATICA should strengthen the understanding of the mathematical ideas
used in coding theory.

2 Introduction to Coding Theory

As an introduction to the theory of Error-Correcting Codes we study the well-known
Venn-Diagram with the three overlapping circles (Fig. 1)

Fig. 1. Venn-Diagram with the three overlapping circles

We place 7 pieces xi, where xi is marked with the number (1) on one side and (0) on
the other, on the respective i-th area of the figure. This could be performed in such a
way, that the sum of the numbers in each circle is even, i.e. for each of the circles
applies Σxi = 0 (mod 2). We will see that there are a total of 16 such possibilities,

and if we write these x = x1x2x3...x7 we have created a code with 16 codewords. If we
transmit such a codeword through a communication channel, it may happen, due to
noise in the channel, that one (or several) of the xi changes from 0 to 1 or vise versa.
In our figure the error is easily found by checking the sum (mod 2) of the numbers in
each of the circles. If we change xi for exactly one i the conditions Σxi = 0 (mod 2)

will be fulfilled. We thus see, that there do exist possibilities to correct errors in the
transmission of information. We now turn to the figure again. The condition

xi∑ = 0 for each of the tree circles immediately gives (if we perform the

operations modulo 2, i.e. within the field Z2).

Error Correcting Codes with Mathematica 739







=+++
=+++
=+++

0

0

0

7432

6431

5421

xxxx

xxxx

xxxx

 ⇔






=++
=++
=++

7432

6431

5421

xxxx

xxxx

xxxx

(1)

It follows that in order to place the 7 pieces correctly, we simply place x1 ... x4 freely
and then compute x5, x6 and x7 in accordance with the equations. This means, that out
of a total of 27 combinations of x1.... x7 there will be 24 combinations satisfying our
condition, i.e. from 27 words there will be 24 codewords . In order to find the
codewords we could also proceed as follows: The word v= (v1v2...v7) would be a
codeword if and only if (1) is satisfied, which in matrix form means if and only if v
satisfy

















1001110

0101101

0011011

vtr =

0

0

0















⇔ H vtr = 0 (2)

In order to check whether a word w received from the communication channel is a
code word, we only compute H wtr = str , where s is called the syndrome, if str = 0,
then v is a code word. If exactly one error occurs in the transmission, then exactly one
xi would be false, and we write (as vectors) w = v + ei , where v is a code word and ei

has a single nonzero bit, in the position i .
We compute H vtr = H (vtr +ei

tr) = (linearity!) = H vtr + H ei

tr = 0 + H ei

tr = the i:th
column in H. One of these columns has to be in accordance with str and so we correct
the corresponding vi. It can easily be proved that we would always find the error,
provided we have exactly one false bit.
In general, if H is a binary matrix, the linear code with the parity check matrix H
consists of all vectors v, satisfying H vtr = 0. Usually H is an (n-k) x n matrix H = [A
In-k], with In-k the unit matrix (n-k) x (n-k) . With the information word u = u1... uk we
write the codeword v = v1...vkvk+1...vn , where vi = ui 1 ≤ i ≤ k and where vk+1.... vn

are the check symbols. We then have H vtr = 0 ⇔ x = uG, where G = [Ik A
tr]. G is

called the generator matrix of the code. We have in our introductory example ended
demonstrated the Hamming Code K[7,4,3], where the parameter 7 indicates the length
and 4 the dimension (=number of information bits) of the code. The parameter 3 gives
the hamming distance d of the code: the hamming distance d (x, y) between the words
x and y equals the number of positions i, where xi ≠ yi ; d = min d (x, y) =
minimum distance between any two codewords. d is easily found to be equal to the
minimum hamming weight wt (v) of any codeword v, where wt(v) is the number of
nonzero vi .

The Hamming Code K [n, k, d] is characterized by (let m be the number of check
bits, m ≥ 2) n = 2m-1, k = 2m-1-m, d=3 and is a perfect single-error-correcting code,
meaning that the code has exactly the information needed for correcting one error. In
this case, every possible received word is either a code word or has a hamming
distance equal 1 to exactly on code word.

740 I. Gashkov

3 The Package "Coding Theory"

The package ” Coding Theory” is a file written in MATHEMATICA and will be read
into MATHEMATICA with the commands.

In[1] :=<<CodingTheory.m

The package consists of two parts: one part with illustrative explanations, and one for
scientific purposes. The illustrative part (commands starting with Show...) is
considered to visualize the theoretical aspects of encoding / decoding, construct shift-
register circuits etc. The command ?Show* gives the following list of commands

In[2] := ?Show*

Out[2]=Show
ShowHammingCode
ShowBinaryGaloisField
ShowMeggittDecoder
ShowErrorTrappingDecoderBCHCode
ShowSystematicEncoderCyclicCode
…

The complete information about a command is received by using the command
? Name.

In[3] : = ? ShowHammingCode

Out[3]= ShowHammingCode[m,inf] shows the method of
encoding an information word inf into a hamming code
word of length 2^m - 1 .

We now use MATHEMATICA to construct Hamming codes. We first chose m = 3
which gives n=23 - 1 =7, i.e. the code K [7,4,3].

In[4]:= inf={1,1,1,0}; ShowHammingCode[3,inf]

Out[4]=
PARITY CHECK GENERATOR

MATRIX=

















1010101

1100110

1111000

MATRIX=



















0000111

0011001

0101010

1001011

inf = {1,1,1,0}
v = inf * G HAMMING CODE VECTOR v = {0,0,0,1,1,1,1}

Error Correcting Codes with Mathematica 741

We proceed by sending the code word v and let an error appear in the 5-th position.
We thus decode the received word w = (0001011).

In[5]:= v={0,0,0,1,1,1,1};e={0,0,0,0,1,0,0};
w=Mod[v + e,2]; ShowDecHammingCode[3,w]

Out[5]=

PARITY CHECK MATRIX=

















1010101

1100110

1111000

 S =

















1

0

1

POSITION OF ERROR = 5 RECEIVED WORD = {0,0,0,1,0,1,1}
DECODED WORD = {0,0,0,1,1,1,1} inf ={1,1,1,0}

We now compute the parameters of the code.

In[6]:=
H = HammingMatrix[3];Length[H[[1]]] ;DimensionCode[H];
DistanceCode[H]
Out[6]=
7
4
3

4 Fundamental from Algebra

We need for the construction of the linear block-codes some prerequisites from
algebra, such as structures of groups, cosets, rings and finite fields. The linear block
codes are seen as subspaces of linear spaces over a finite field. Of fundamental
importance are the following algebraic concepts:
• Irreducible polynomial : f (x) is irreducible over the field F, if f(x) cannot be

factored as a product of two polynomials of degrees smaller than that of f(x).
• Primitive element: � is a primitive element in the field F provided that every

nonzero element in F is equal to some power of �.
• Minimal polynomial: If � is an element of some extension of the field F, the

minimal polynomial of � (with respect to F) is the lowest-degree monic
polynomial M (x) over F with M (�) = 0. The minimal polynomial M(x) of � ∈
GF(pm) can be computed as

M(x)=))...()()((
2 ippp xxxx ββββ −−−− , where

1+

=
ipββ

• The Galois field GF(pm) is defined as an algebraic extension of the field Zp (p
prime number) by an irreducible polynomial of degree m. If g(x) is a polynomial

742 I. Gashkov

of degree m and irreducible over Zp we construct GF(pm) = Zp / g(x) with pm

elements ∑
−

=

1

0

m

i

i
ia α , pi Za ∈ . The element α satisfies 0)(=αg .

In[7]:=
BIP = BinaryIrreduciblePolynomials[3,x]
Out[7] = {1 + x2 + x3 , 1 + x + x3 }

In[8]:=irrpol=BIP[[2]];
ShowBinaryGaloisField[irrpol, x, b, b]

GF(8) is received by extending the field Z2 by the irreducible polynomial g(x) = 1 +
x + x3 and observe that b is a primitive element in this extension field.

Out[8] =

 N Vector Primitive Polynomial
Element

Minimal
polynomial

-� (0, 0, 0) 0 0 x
 0 (1, 0, 0) 1 1 1 + x
 1 (0, 1, 0) b b 1 + x + x3

 2 (0, 0, 1) b2 b2 1 + x + x3

 3 (1, 1, 0) b3 1 + b 1 + x2 + x3

 4 (0, 1, 1) b4 b + b2 1 + x + x3

 5 (1, 1, 1) b5 1 + b + b2 1 + x2 + x3

 6 (1, 0, 1) b6 1 + b2 1 + x2 + x3

We illustrate the multiplication of the elements 1 + b + b2 and 1 + b2 in GF(8):

In[9] := PolynomialMod[PolynomialMod[(1+b+b2)*(1+b2),
irrpol /. x - > b], 2]

Out[9] = b + b2

5 Cyclic Codes

The linear code K is called cyclic, if v = ()110 ,...,, −nvvv ∈ K ⇔
w = ()201 ,...,, −− nn vvv ∈ K. If we then represent the vector v =

()110 ,...,, −nvvv with the polynomial ∑
−

=

=
1

0

)(
n

i

i
i xvxv , the cyclical shift of v to w

corresponds to a multiplication of)(xv with x . If)(xg is a polynomial with lowest

degree in K, it can be shown, that)(xg is uniquely determined and generates K (i.e.

Error Correcting Codes with Mathematica 743

every other codeword)(xc in K could be written)()()(xgxqxc ⋅=) and is thus

called the generator polynomial of K)(xg is a divisor of 1−nx , has degree (n - k)

and we have the following connection between the generator matrix and the generator
polynomial:

G =

g x

xg x

g x
k

x

()

()

.

()
−

















1

(3)

In a cyclical code we now construct the code word)(xv from the information word u

in following steps:

•),...,(0 kuuu = ⇒ knn
k

n
k xuxuxuxu −−

−
− +++= 0

2
1

1 ...)(

• construct)(xr as the remainder in)()()()(xrxgxqxu +⋅=
• let the code word be)()()(xrxuxv ⋅=
These algebraic operations could be performed by the shift register circuit (Fig. 2):

Fig. 2. Shift register circuit.

In MATHEMATICA we illustrate the procedure with the Hamming code K [7,4,3]:
We first receive the generator polynomials to the code by the command:

In[10] : = gp=GeneratorPolynomials[7,x]

(This command gives all possible)(xg of length 7)

Out[10] ={1, 1+x, 1+x+x3, 1+x2 +x3, 1+x+x2+x4,
1+x2+x3+x4, 1+x+x2+x3+x4+x5+x6, 1+x7}
In[11] : = g=gp[[3]]

(We choose the third polynomial as)(xg i.e.)(xg = 1 + x + x3)

Out[11] = 1 + x + x3

In[12] : = ShowCyclicCode[g,7,x]

744 I. Gashkov

Out[12] =

GENERATOR POLYNOMIAL g = 1 + x + x3

GENERATOR MATRIX GM =



















0000111

0011001

0101010

1001011

PARITY CHECK POLYNOMIAL h = 1 + x + x2 + x4

PARITY CHECK MATRIX HM =

















1010101

1100110

1111000

From MATHEMATICA we then get the shift-register (systematic encoding)

In[13] : = ShowSystematicEncoderCyclicCode[g,7,x]

Out[13] =

Fig. 3. Shift-register (systematic encoding) for cyclic code with generator polynomial)(xg =

1 + x + x3

With the information word u = (1, 0, 1, 1) we get the code word as follows:

In[14] : = u={1,0,1,1}; U=x^6+x^5+x^3;
r=PolynomialMod[PolynomialMod[U,g],2];
V=PolynomialMod[U-r,2] v=CoefficientList[V,x]

Error Correcting Codes with Mathematica 745

Out[14] = 1 + x3 + x5 + x6

 {1, 0, 0, 1, 0, 1, 1}

Using the package we get:

In[15] : = SystematicEncodeCyclicCode[g,u,7,x]
Out[15] =
THE INFORMATION POLYNOMIAL = x3 + x5 + x6

THE CODE POLYNOMIAL = 1 + x3 + x5 + x6

THE CODE WORD = (1, 0, 0, 1, 0, 1, 1)

From the information word u = (1, 0, 1, 1) we have thus got the code word
)(xv = 1 + x3 + x5 + x6 = (1, 0, 0, 1, 0, 1, 1) which will be sent through the

communication channel. Due to noise in the channel, the receiver might receive
)()()(xexvxw += , where)(xe is an error vector. We illustrate this in our

example by letting)(xe = x4, i. e)(xw = 1 + x3 + x4 + x5 + x6. Our next aim is to

decode the received word w = (1, 0, 0, 1, 1, 1, 1).

746 I. Gashkov

In general, when we receive a word w from the communication channel we use the
concept of syndromes to reconstruct the information word. For a general linear code
this requires the following steps:
• compute the syndrome str = H wtr

• divide the received words into cosets and fix a coset leader e with smallest
hamming weight to each coset

• decode as v = w - e
Within the cyclic codes we construct the syndrome polynomial)(xs from

)()()()(xsxgxqxw +⋅= . As deg)(xs < deg)(xg , we find the syndrome)(xs
as all possible polynomials with degree less (n - k). For every)(xs we chose an error

vector)(xe with smallest hamming weight and decode as)()()(xexwxv −= . For

the Hamming code K[7,4,3] with generator polynomial)(xg = 1 + x + x3 we

construct the syndromes and we get for error)(xe = x4, syndrome)(xs is xx +2 .

We use MATHEMATICA to describe the methods of decoding. We consider (as in
the example above) the Hamming code K [7, 4, 3], were we received the word)(xw
= 1 + x3 + x4 + x5 + x6 . The following steps illustrate how the information word
could be reconstructed:

In[16] : =V=1+x^3+x^5+x^6; e=x^4; W=V+e;
s=PolynomialMod[PolynomialMod[W,g],2]
Out[16] = x + x2

We have got the syndrome polynomial and from the syndrome list above we
recognize the error polynomial)(xe = x4. An alternative way to decode the received

word)(xw = 1 + x3 + x4 + x5 + x6 is given in next steps:

In[17] : = w =CoefficientList[W,x]
Out[17] = {1, 0, 0, 1, 1, 1, 1}
In[18] : =H = CyclicCode[g,7,x][[1]] Syndrome[H,w]

Out[18] =

















0011101

0111010

1110100

 s =

















1

1

1

We see that this column is identical with the 5-th column in H, indicating that we
have an error in the 5-th position.

References

1. MacWilliams, F. J., and Sloane, N. J. A. (1977) The Theory of Error-Correcting Codes.
North-Holland, Amsterdam.

2. Adamek, J., Foundations of Coding , John Wiley & Sons, Inc 1991

	Introduction
	Introduction to Coding Theory
	The Package "Coding Theory"
	Fundamental from Algebra
	Cyclic Codes
	References

