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Abstract. An open web-based tool for automatic discovery in elemen-
tary Euclidean geometry, webDiscovery, is described. It is based in recent
findings in automatic discovery in geometry. A user-defined geometric
construction is uploaded to a Java Servlet server, where two computer
algebra systems, CoCoA and Mathematica, return the discovered facts
about the construction. webDiscovery can be efficiently used in mathe-
matics education, linkage design and testing and computer aided geomet-
ric design. The system can be tested at rosalia.uvigo.es/sdge/web/2D.

1 Introduction

Since the birth of Artificial Intelligence research, considerable attention has been
paid to develop computer programs for automatic geometry reasoning. First
attempts [9,20,22] were based on the synthetic approach, while from the 80’s
onwards the algebraic approach (mainly Wu’s method and the Groebner basis
method) [25,6,13] and the geometric invariant approach [7] revived interest in
the field.

Two new interactive environments for learning geometry [17,12] appeared
also in the 80’s and defined a field of computer aided instruction referred to
as dynamic geometry. Dynamic geometry software (see also [23,8,1]) refers to
computer programs where accurate construction of geometric configurations can
be done. The key characteristic of this software is that unconstrained parts of
the construction can be moved and, as they do, all other elements automatically
self–adjust, preserving all dependent relationships and constraints [16]. Dynamic
geometry environments have been considered as instruments for theorem proving
and discovery [18,11,19].

In this paper, an open web–based tool for automatic discovery in elementary
Euclidean geometry is proposed. Section 2 explains what is understood by au-
tomatic discovery and gives an overall description of the mathematical bases of
the approach. The implementation on the server’s side is discussed in Section
3, and some examples and limitations of the proposal are given in Section 4.
Finally, some ways for further development are proposed.
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2 Automatic Discovery in Euclidean Geometry

While automatic proving deals with verifying geometric statements, and auto-
matic derivation relates to finding geometric formulae holding among prescribed
geometric magnitudes, automatic discovery refers to finding complementary hy-
potheses for arbitrary statements to become true [21], or, in other words, to
finding the missing hypotheses so that a given conclusion follows from a given
incomplete set of hypotheses [15].

Our program follows an algebraic approach. It performs automatic discovery
in Euclidean geometry via algorithmic commutative algebra and algebraic ge-
ometry using Groebner bases [4]. An in–depth description of the mathematical
framework used can be found in [14,21,3].

Roughly speaking, the procedure is as follows. A statement (a finite set of
hypotheses and a thesis) of the subclass of geometric constructions expressed
using the concepts of parallelism, incidence and congruence, is considered, where
the conclusion does not follow from the hypotheses. Symbolic coordinates are
assigned to the points of the construction (where every free point gives up two
new free variables ui, ui+1, and every bounded point gives up two new dependent
variables xj , xj+1), and the hypotheses h1, . . . , hn and the thesis t are rewritten
as polynomials in Q[u,x]. Since the geometric information of the construction
is contained in the polynomial system, any Groebner basis of the system will
contain the same knowledge. Thus, eliminating the dependent variables in the
ideal (hypotheses, thesis), the vanishing of every element in the elimination ideal
(hypotheses, thesis) ∩ Q[u] is a necessary condition for the statement to hold.

Fig. 1. When is O on side BC?

In order to illustrate the approach, we use a simple example showing that a
necessary condition for the alignment of the circumcenter of a triangle on one
of its sides is the rightness of the triangle. The geometric construction of Fig. 1
consists of three free points A(0, 0), B(1, 0), C(u1, u2), (there is no restriction
in assuming A and B as origin and unit points), the perpendicular bisectors of
sides AB and AC defined by means of their midpoints D(x1, x2), E(x3, x4), and
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the circumcenter O(x5, x6) lying on both lines. Thus, the polynomials are x1 −
1/2, x2, x3−u1/2, x4−u2/2, x5−x1, u2(x6−x4)−u1(x5−x3). Adding as condition
the collinearity of O, B, C, (that is, the polynomial x6(u1−x5)−(u2−x6)(x5−1)),
the elimination of dependent variables returns 1/2u3

1 + 1/2u1u
2
2 − u2

1 + 1/2u1,
a polynomial whose zeros are those of u1 (note that in this case A, B, C are
collinear, that is, the triangle is degenerated), or those of u2

1 + u2
2 − 2u2

1 + 1,
which can be understood as a perpendicularity condition between sides AB and
AC.

3 System Description

Since the main topic in this paper is geometric theorem discovery and web–
availability, it is necessary to emphasize the way it works on the server’s side.
webDiscovery uses webMathematica, a Java servlet technology allowing remote
access to the symbolic capabilities of Mathematica. Furthermore, CoCoA [5], an
efficient system specialized in operations over commutative rings of polynomi-
als, is used to perform computationally expensive tasks such as factoring and
Groebner bases computations. A sketch of the main tasks in webDiscovery is
shown in Fig. 2.

Fig. 2. The architecture and main tasks of webDiscovery

The first step in discovery consists in uploading the geometric construction
into the server. This is done via a plain text file written by the user or generated
by a dynamic geometry environment. The text file contains the polynomial and
linguistic knowledge about the construction, and its structure is illustrated as
follows for the case of the circumcenter (where an * denotes an optional line):

Points
C(u[1],u[2])
B(1,0)
A(0,0)
D(x[1],x[2])
E(x[3],x[4])
O(x[5],x[6])
(blank line)
Properties
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(x[1]-(1+0)/2)
(x[2]-(0+0)/2)
(x[3]-(u[1]+0)/2)
(x[4]-(u[2]+0)/2)
((0-u[2]))*(x[6]-x[4])+((0-u[1]))*(x[5]-x[3])
((0-0))*(x[6]-x[2])+((0-1))*(x[5]-x[1])
(blank line)
Conditions

(x[6]-0)*(u[1]-x[5])-(u[2]-x[6])*(x[5]-1)

(blank line)
LingProperties

Midpoint(D,B,A)*
Midpoint(E,C,A)*
Perpendicular(BA,OD)*
Perpendicular(CA,OE)*
(blank line)
LingConditions

Aligned(B,O,C)*
(blank line)
LocusPoint

Fig. 3. The necessary conditions for the alignment of the circumcenter
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Although it is possible to write by hand this file or similar ones, there is
a dynamic geometry program, webREX [24], which can export geometric con-
structions in this format. The use of a well–known dynamic geometry envi-
ronment, The Geometer’s Sketchpad [12], for performing automatic discovery
through the web has also been investigated, and preliminary results can be found
at http://193.146.36.49/Discovery.

Once the file has been uploaded into the server, a Mathematica Server Page
is launched. It reads the file, initializing variables and deciding which class of
task (general or locus discovery) is needed. An initialization file for CoCoA, con-
taining the ideal generated by the properties and conditions polynomials, is also
written out, and CoCoA, launched inside Mathematica, computes a Groebner
basis of this ideal. For the case of the circumcenter, the basis ideal, as returned by
CoCoA, is Ideal(1/2u[1]ˆ3 + 1/2u[1]u[2]ˆ2 - u[1]ˆ2 + 1/2u[1]). Each
generator is factored (a task also done by CoCoA), and a process of logical ex-
pansion is performed on the conjunction of the generators in order to remove
repeated factors. Each element in the final conjunctive normal form is matched
against a database of linguistic predicates, returning a compound proposition of
elementary geometric facts and/or equations, if the pattern matching has not
succeeded for any of the factors (Fig. 3).

If we were trying to discover a locus, the returned factors would be classified
as points, lines, conics or general curves. Additionally, the Mathematica graphic
abilities are used to plot the locus.

4 Examples and Limitations

webDiscovery can be used to discover (or rediscover) a vast class of Euclidean
properties. The following examples illustrate its abilities.

4.1 General Discovery

Example 1 (Simson Steiner theorems). Given a triangle ABC and a point X on
its plane, which are the necessary conditions for the collinearity of the perpen-
dicular projections M,N,P of X on the triangle sides? (Fig. 4)

Selecting A as origin and B as unit, and imposing the alignment of M,N,P ,
the system finds Aligned(A, B, C)∨OnCircle(A, B, C, X) as necessary conditions
for the statement to become true. Note that the triangle being not degenerated,
the well–known thesis of Simson Wallace theorem has been found.

Using again the construction, webDiscovery easily allows a generalization.
If we change the imposed condition to area(M,N,P ) = 1, the system re-
turns as necessary condition the equation 2u(5)2 − 4u(5)3 + 2u(5)4 + 2u(6)2 −
4u(5)u(6)2+4u(5)2 u(6)2+2u(6)4−u(6)3 u(7)+u(6)3 u(7)2+u(5)u(6)2 u(8)−
u(5)2 u(6)2 u(8) − u(6)4 u(8) + u(6)3 u(8)2 = 0 , that is, X(u7, u8) must lie on
a circle. As a simple calculation shows, this circle is concentric with the cir-
cumcircle, thus rediscovering Steiner theorem. webDiscovery does not return



806 F. Botana

Fig. 4. Construction for discovering Simson theorem

any linguistic statement since there are none in the database involving the free
points A, B, C, X that matches the equation.

Example 2. Given a quadrilateral ABCD and the intersection points of its
diagonals, M , a necessary condition for the equality of the areas of triangles
AMD and BCM is the parallelism of sides AB and CD. (Fig. 5)

Fig. 5. Construction and discovery result for Example 2

4.2 Loci Search

Except for the most simple cases, such as lines, circles and perhaps the conics,
visualizing loci is a hard task due to common difficulties when considering var-
ious objects with different movements. Although there exist dynamic geometry
programs that can plot loci, they are restricted to a narrow class of loci and they
cannot generally find the analytic expression of loci [2].

Example 3. Recalling Steiner theorem, where only an equation was returned
as the result of discovery, webDiscovery is able to return more specific knowl-
edge. Using A and B to define a rectangular coordinate system, the strategy
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used substitutes all free points symbolic coordinates, except for those of the lo-
cus point (which must be described as such), by their numeric values. Thus, the
equation just involves the coordinates of the locus point. This equation is there-
fore linguistically interpreted as a circle, and the Mathematica abilities to plot
implicit equations are used, as shown in Fig. 6. It must be noted that when using
the locus discovery option, no general discovery is performed. For this theorem,
the point C is not a general one but a fixed point in the plane.

Fig. 6. The locus of X such that the oriented area of triangle MPN is 1

Redefining points M,N,P to be the projections on the triangle sides along
three directions, not all three equal, nor parallel to the respective sides, the locus
of points X, such that the oriented area of triangle MNP remains constant, is
a general conic, a result recently proved in [10]. Fig. 7 shows the constructions
and the obtained loci, an ellipse and a hyperbola.

Example 4 (A four bar linkage). Consider a mechanism with four linked bars:
the foundation link AC (taken as unit segment), the input or driver link AB, the
output or driven link CD, and the connecting link BD (Fig. 8, left). A common
way to test the behavior of this linkage consists of obtaining the locus of the
midpoint X of the connecting link. webDiscovery plots the locus of X as shown
in Fig. 8, right, and it finds that this curve is the sextic

4563
128000 − 15483u(11)

32000 + 246529u(11)2

96000 − 508u(11)3

75 + 373u(11)4

40 − 19u(11)5

3 + 5u(11)6

3 +
3087u(12)2

6400 − 308u(11)u(12)2

75 + 679u(11)2 u(12)2

60 − 38u(11)3 u(12)2

3 + 5u(11)4 u(12)2 +
239u(12)4

120 − 19u(11)u(12)4

3 + 5u(11)2 u(12)4 + 5u(12)6

3 = 0



808 F. Botana

Fig. 7. Two cases in a generalization of Simson Steiner theorems

Fig. 8. A four bar linkage and the locus of BD midpoint
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4.3 Limitations

There are several known limitations in webDiscovery. On the one side, just a
limited number of natural language statements (mainly dealing with equality,
collinearity and cocircularity of points, and parallelism/perpendicularity of lines)
are managed in the matching process of equations, when not doing loci discov-
ery. Furthermore, currently unavoidable simplification processes in the symbolic
routines sometimes impede the expression of the discovered conditions in natural
language. The diagonals of a quadrilateral meet at their midpoint if it is a par-
allelogram, but only one condition of parallelism is returned using the Parallel
predicate, the other remaining in equational form.

On the other side, the proposed method is complete only in an algebraically
closed field containing Q, C for instance [14]. Nevertheless, the method works
for a surprisingly vast amount of Euclidean constructions. In addition, some
tricks have been implemented. Consider for example a discovery involving the
zeros of x2 + y2. Although x2 + y2 = 0 → x = 0, y = 0 is not a theorem in C,
webDiscovery will return the point (0, 0). Another source of imprecision in the
system is due to the internal substitution of expressions involving distances by
their square values, in order to keep the analytic knowledge in polynomial form,
a prerequisite for using CoCoA. This decision will sometimes produce incorrect
results.

5 Conclusion and Further Work

A web–based system for carrying out automatic discovery in the domain of plane
Euclidean geometry has been described. webDiscovery is particularly well–suited
for obtaining loci of points that describe algebraic curves, a difficult task in other
systems for dynamic geometry or of parametric CAD. Ongoing research is being
conducted to extend its domain for dealing with non–polynomial equations and
inequalities, thus allowing a consideration of new relations between geometric
elements.
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