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Abstract. A technique, permitting us to find synchronization-free parallelism in
non-uniform loops,  is presented. It is based on finding affine space partition
mappings. The main advantage of this technique is that it allows us to form
constraints for finding mappings directly in a linear form while  known
techniques result in building non-linear constraints which should next be
linearized. After finding affine space partition mappings, well-known code
generation approaches can be applied to expose loop parallelism. The technique
is illustrated with two examples.

1    Introduction

A lot of  transformations have been developed to expose parallelism in loops,
minimize synchronization, and improve memory locality in the past
[1],[3],[4],[6],[7],[8],[9],[10],[11],[12],[14],[15],[19]. However, there are  the
following questions. Which of these methods permit us to find synchronization-free
parallelism and what is their complexity for non-uniform loops.

According to a  study by Sass and Mutka[18], a majority of the loops in scientific
code are imperfectly nested, and a majority of the performance-increasing techniques
developed in the past assume that loops are perfectly nested, that is, imperfectly
nested loops deserve more attention from the research community.

This paper presents a technique permitting us to find synchronization-free
parallelism in non-uniform loops. We refer to a particular execution of a statement for
a certain iteration of the loops, which surround this statement, as an operation. The
operations of a loop are divided into partitions, such that dependent operations are
placed in the same partition. A partitioning is described by an affine mapping  for
each loop statement.

An m-dimensional affine partition mapping for statement s in a loop is an m-

dimensional affine expression  ciC sss
+=φ , which maps an instance of statement s,

indexed by its iteration vector i , to an m-dimensional vector. Given affine mappings,
well-known techniques for generating parallel code can be applied, for example,
[2],[4],[5],[17].
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2    Dependence Analysis

Our algorithm is based on the dependence analysis proposed by Pugh and Wonnacott
[16]. That analysis permits us to extract exact dependence information for any single
structured procedure in which the expressions in the subscripts, loop bounds, and
conditionals are affine functions of the loop indices and loop-independent variables,
and the loop steps are known constants. Dependences are presented with dependence
relations. A dependence relation is a mapping from one iteration space to another, and
is represented by a set of linear constraints on variables that stand for the values of the
loop indices at the source and destination of the dependence and the values of the
symbolic constants. A dependence relation is a tuple relation. An integer k-tuple is a
point in kZ . A tuple relation is a mapping from tuples to tuples.

The basic merits of the dependence analysis proposed by Pugh and Wonnacott are
as follows: i) it is exact; ii) it is valid for both perfectly and imperfectly nested loops;
iii) it permits value-based dependences to be calculated.

A dependence between operations I  and J , which are the source and destination

of the dependence, respectively, is value-based  if: I  is executed before J ; I  and

J refer to a memory location M, and at least one of these references is a write; the

memory location M is not written between operation I  and operation J .
The dependence analysis by Pugh and Wonnacott is implemented in Petit, a

research tool for doing dependence analysis and program transformations. To carry
out dependence analysis manually, the Omega calculator can be applied [13].

An affine loop nest is non-uniform if it originates non-uniform dependence
relations represented by an affine function f that expresses the dependence sources I

in terms of the dependence destinations J  ( I =f( J )) or vice versa.
An algorithm proposed in this paper is applicable for those loops that meet the

restrictions of the dependence analysis proposed by Pugh and Wonnacott [16].

3    Space-Partition Constraints

Our approach is applicable to the following imperfectly nested loop considered in
[19]

do 111 U,Lx =

a1S :       )x(H 1a1

       do 222 U,Lx =

a2S : )x,x(H 21a2

…
do nnn U,Lx =

nS :       )x,...,x(H n1n

…

(1)
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b2S : )x,x(H 21b2

    b1S : )x(H 1b1 ,

where the loop bounds of  xk  are affine constraints over surrounding loop variables

x1 ,…, x 1k −  and some symbolic integer constants, or formally:

,...),,max(

,...),max(

2,1,

2,1,

uuU

llL

kkk

kkk

=
=

where

=l p,k � l/)xl...xll( k
p,k1k

1k
p,k1

1
p,k

0
p,k −

−+++ �

=u p,k � u/)xu...xuu( k
p,k1k

1k
p,k1

1
p,k

0
p,k −

−+++ �

and all l p,k  and u p,k  are integer constants, except possibly for l0
p,k and  u0

p,k , which

may be symbolic constraints but must still be loop invariants in the loop nest. The
ceiling and floor functions are introduced to convert rationals to integers. In general, a
lower(upper) loop bound is a maximum(minimum) of affine constraints with rational
coefficients.  This ensures that the space defined by any set of loops in the loop nest is
a convex polyhedron.

In this section, we consider the following task. Given a set of dependences
originated by a loop and presented with dependence relations

},...,,,{ q21jJID jj =>−= ,

find ms -dimensional affine  space  partition mappings ciC sss
+=φ for each s=1a,

2a, ..., n,...,2b, 1b,  such that P)J()I( mjskjsi
== φφ , where si, sk are the statements

which instances originate the source and destination of the dependence  JI jj >− , Cs

is a matrix of dimensions ms x n, cs is an ms -dimensional vector representing a

constant term,  Pm  is a vector representing the identifier of  a processor to execute

the source and destination of the dependence  JI jj >− .

Let jj J,I be represented in the following form

1B1i*AI jjj1j += ,  2B2i*AJ jjj2j += ,

where jj J,I are 1m j  and 2m j -dimensional  vectors, respectively, 1m j <=n,

2m j <=n,  n is the number of the loop nests, 1B j , 2B j  are  1m j  and 2m j -

dimensional vectors, respectively, 1i j and 2i j are n-dimensional vectors, A j1 and

A j2  are matrices of dimensions  1m j x n and 2m j x n, respectively.

Let us  write matrices A j1 and A j2  in the following form
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]...[ AAAA
n

j1
2

j1
1

j1j1 = ,  ]...[ AAAA
n

j2
2

j2
1

j2j2 = ,

where A
i

j1 and  ,2A
i

j i=1,2,…,n  represent the columns of  A j1  and A j2 ,

respectively.
If a dependence ],1[, qjJI jj ∈>−  is the self dependence, that is, it is

originated with the same statement s,  we seek an affine  space  partition mapping

ciC sss
+=φ  such that the following condition is satisfied

cJCcIC sjssjs +=+
or

0JCIC jsjs =− ,

which means that the same processor executes operations I j  and J j .

Let us rewrite  the equation above as follows

,0)22...2211
2(

)11...1111
1(

2
22

2

1
22

1

=++++−

−++++

BiAiAi jA jC

BiAiAi jA jC
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j
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j
n
j

n
jjjs

where 1i1i1i n
j

2
j

1
j ,...,,  and 2i2i2i n

j
2
j

1
j ,...,,  are the coordinates of 1i j  and 2i j ,

respectively, and transform it to the form

,,,...,,

,,...,,

02BC2iAC2iAC2iAC

1BC1iAC1iAC1iAC

js
n
j
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2
j

2
j2s

1
j

1
j2s

js
n
j

n
j1s

2
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2
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1
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=〉〈−〉〈−−〉〈−〉〈−

−〉〈+〉〈++〉〈+〉〈
(2)

where 〉〈 yx, denotes the inner product of vectors x  and y  , Cs  represents an

arbitrary row of Cs .

 If a dependence ],1[, qjJI jj ∈>−  is originated with two different  statements

s1 and s2,  we seek two affine  space  partition mappings ciC 1s1s1s
+=φ  and

ciC 2s2s2s
+=φ   such that the following condition is satisfied

cJCcIC 2sj2s1sj1s +=+ .

Let us rewrite  the above condition as follows

,)...(

)...(
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and transform it to the form
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,,,...,,

,,...,,

0c2BC2iAC2iAC2iAC

c1BC1iAC1iAC1iAC

2sj2s
n
j
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2
j

2
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1
j

1
j22s

1sj1s
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j

n
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2
j

2
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1
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1
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=−〉〈−〉〈−−〉〈−〉〈−

−+〉〈+〉〈++〉〈+〉〈
(3)

where CC 2s1s ,  represent an arbitrary row of CC 2s1s , , respectively, cc 2s1s ,  are

unknown constant terms which are  dependent on  CC 2s1s , .

 Let us introduce an r j -dimensional  vector i j  which consists of all uncommon

coordinates(having different names) of  JI jj ,  and  the coordinates of this vector be

irii jjjj ,...,, 21 , r j <= 1m j + 2m j .   Rewrite equations (2) and (3)  in the following form

,0diD j
k
j

r

1k

k
j

j

=+∑
=

(4)

where  Dk
j  and  d j  are formed as follows:

 i) for self dependences, it is  the sum of all those 〉〈 A,C
m

j11s and  〉〈− AC
p

j21s , for

which the following condition holds  i2i1i k
j

p
j

m
j == ; 〉〈−〉〈= 2B,C1B,Cd j1sj1sj ;

ii) for dependences originated with two different statements, it is  the sum of all

those 〉〈 A,C
m

j11s and  〉〈− AC
p

j22s , for which the following condition holds

i2i1i k
j

p
j

m
j == ; cc2B,C1B,Cd 2s1sj2sj1sj −+〉〈−〉〈= .

Algorithm. Find affine space partition mappings for a loop originating the
dependences  defined by set D.

1. From each dependence q21jJI jj ,...,,, =>− , build the constraint in the form

of  (4).
2. Construct a system of linear equations of the form

r21kq21j0d

0D

jj

k
j

,...,,,,...,,,

,

===

=

            which we rewrite as

0xA = ,

            where x is a vector representing all the unknown coordinates of Cs  and

            constant terms cs of the affine space partition mappings, s=1a, 2a, ..., n,...,

            2b, 1b.
The remaining steps are the same as in the algorithm proposed in [15 ], namely
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3. Eliminate all the unknowns cs  from  0xA =  with the Gaussian Elimination

algorithm. Let the reduced system be 0xA =’’ , where ’x represents the

unknown coordinates of Cs .

4. Find the solution to 0xA =’’  as a set of basis vectors spanning the null space
of ’A .

5. Find one row of the desired affine partition mapping from each basic vector
found in step 4.  The coordinates of  Cs  are formed directly by the basic

vector; the constant terms cs  are found from the coordinates of  Cs  using

0xA = .
After finding  mappings, well-known techniques for generating parallel code can

be applied, for example, [2],[4],[5],[17] and they are out of the scope of this paper.

4    Examples

Let us illustrate the technique presented by means of  the two following examples.

Example 1:

for (i = 1; i <= n; i++)

  for (j = 1; j<= n; j++)

    for (k = 1; k <= n; k++)

         s1: a(j)=b(i);

For this loop, the dependences found with Petit are as follows

output   s1: a(j) �   s1: a(j)
{[i,j,k] � [i,j,k’] : 1 <= k < k’ <= n && 1 <= i <= n && 1 <= j <= n},

output   s1: a(j)  �   s1: a(j)
{[i,j,k] � [i’,j,k’] : 1 <= i < i’ <= n&&1 <= j <= n&&1 <= k<=n&&1<= k’ <= n}.

We seek a mapping  of the form iCCC 1312111s
][=φ . According to our

approach, we first form the following constraint

k*Cj*Ci*Ck*Cj*Ci*C ’
131211131211 ++=++

k*Cj*Ci*Ck*Cj*Ci*C ’
1312

’
11131211 ++=++ ,

which we simplify to the following form

.)()(

,)(*
’’

’

0kkCiiC

0kkC

1311

13

=−+−

=−
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The resulting constraint is as follows

.0C

0C

13

11

=
=

The  linearly  independent solution to this system is

0C,1C,0C 131211 === .

Applying the Omega code generator (free available at
ftp://ftp.cs.umd.edu/pub/omega) for the transformation of  the source loop by means
of  the space partition mapping ][ 010C1 = , we have got the following parallel code

parfor(p = 1; p <= n; p++)

  for(t1 = 1; t1 <= n; t1++)

    for(t2 = 1; t2 <= n; t2++)

      s1: a(p) = b(t1);

where for and parfor denote serial and parallel loops, respectively. The outer loop
gives space partitioning while the inner loops define the statement instances executed
serially by a given processor p.

Consider the following imperfectly nested loop.
Example 2:

for (i = 1; i <= n; i++){

   for (j = 1; j <= n; j++){

      for (k = 1; k <= n; k++){

         s1: c(i,j,k)=a(N-j,k);

      }

      s2: a(N-j+1,i)= b(j,k);

   }

}

This loop originates the following dependences found with Petit

anti    s1: a(N-j,k)  �  s2: a(N-j+1,i)

{[i,j,i] � [i,j+1] : 1 <= i <= N && 1 <= j < N,},

anti    s1: a(N-j,k)   �  s2: a(N-j+1,i)

{[i,j,k] � [k,j+1] : 1 <= i < k <= N && 1 <= j < N},

flow    s2: a(N-j+1,i)�  s1: a(N-j,k)

{[i,j] � [i’,j-1,i] : 1 <= i < i’ <= N && 2 <= j <= N}.

ftp://ftp.cs.umd.edu/pub/omega
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We seek mappings  of the form ciCCC 11312111s
+= ][φ  and

ciCC 222212s
+= ][φ .  Firstly, we  form the following constraint

c1jCiCciCjCiC 222211131211 +++=+++ )(*****

c1jCkCckCjCiC 222211131211 +++=+++ )(*****

ciC1jCiCcjCiC 113121122221 ++−+=++ *)(*’***

and next transform it to the form

0CccjCCiCCC 22212212132111 =−−+−++− *)(*)(

0CcckCCjCCiC 22212113221211 =−−+−+−+ *)(*)(*

0CcciCjCCiCC 12121112221321 =+−+−−+− ’**)(*)( .

On the basis of the equations above, we construct the following constraint

              

0Ccc

0CC

0CCC

2221

2212

132111

=−−
=−

=+−

                                                  
0CC

0C

2113

11

=−
=

                                                       
.0Ccc

0CC

1212

1321

=+−
=−

(5)

Eliminating c1 , c2 , we get

0CC

0CC

0CCC

2212

2212

132111

=−
=−

=+−

                                                  
0CC

0C

2113

11

=−
=

                                                  .0CC 1321 =−

The linearly independent solution to the system above is

1C,1C,0C 131211 === , 1C1C 2221 == , .

From system (5) we find that c1 =1, c2 =0.

Applying the Omega code generator for the transformation of  the source loop by
means of  the space partition mappings found, we have got the following parallel code

parfor(p=2; p<= 2*N+1; p++) {

  for(t1=1; t1<= N; t1++) {

    for(t2=max(-N+p-1,1); t2<=min(-t1+p-1,N); t2++) {
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      s1(t1,t2,p-t2-1);

    }

    if (t1 >= 2 && t1 <= p-1 && t1 >= -N+p) {

      s1(t1,p-t1,t1-1);

    }

    if (t1 >= 2 && t1 <= p-1 && t1 >= -N+p) {

      s2(t1,p-t1);

    }

    for(t2 = max(-t1+p+1,1); t2 <= min(p-2,N); t2++) {

      s1(t1,t2,p-t2-1);

    }

    if (p <= N+1 && t1 <= 1) {

      s2(1,p-1);

    }

  }

}
where for and parfor denote serial and parallel loops, respectively; s1 and s2 are
the statements of the source loop.

The outer loop gives space partitioning while the inner loops define the statement
instances which should be executed serially by a given processor  p.

5    Related Work and Conclusion

Unimodular loop transformations[3],[19], permitting  the outer loop to be parallelized,
find synchronization-free partitions. But unimodular transformations do not allow
such transformations as loop fission, fusion, scaling, reindexing, or reordering.

Techniques presented in [1],[11] enable finding synchronization-free partitioning
only for perfectly nested loops, supposing statements within each loop iteration are
indivisible.

The affine partitioning framework, considered in many papers, for example,
[8],[9],[10],[15], unifies a large number of previously proposed loop transformations.
It is the most powerful framework for the loop parallelization today allowing us to
parallelize  loops with both uniform and  non-uniform dependences.

 Work [15] is most closely related to ours.  In contrast to that work and other
known approaches, our technique permits  us to form constraints for finding  affine
space partition  mappings for non-uniform loops directly in a linear form without the
necessity of applying the Farkas lemma to linearize the constraint, and hence it is less
time-consuming than that of work [15] and other known approaches.

In the future research, we plan to extend our technique to  find affine time partition
mappings for the non-uniform  loops which do not allow synchronization-free
parallelization.
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