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Abstract. A commonly employed technique to control access to shared
resources in concurrent programs consists of using critical sections. Un-
fortunately, it is well known that programs using several critical sections
may suffer from deadlocks.
In this paper we introduce a new approach for ensuring deadlock–freedom
in a transparent manner from the programmer’s point of view. Such an
approach consists of obtaining a deadlock–free “version” of the original
program by using some program transformations. We formally prove the
correctness of those transformations and we analyze their applicability.

1 Introduction

In the development of concurrent programs, considerable effort has been devoted
to study the resource allocation problem. While local resources are accessed
only by one process, shared resources can be accessed by many. If two or more
processes simultaneously use the same resource, they can leave it in an incoherent
state. Therefore, some mechanism is necessary to ensure that at most one process
is accessing a shared resource at a time.
Maybe the most widely used mechanism for such a task consists of using

critical sections. Roughly speaking, a critical section can be seen as a section of
code where processes have exclusive access to the resources allocated within.
In order to access a critical section, a process must acquire and release it by

executing especial code. This code forces shared resources to be “sequentially”
accessed. Consequently shared resources are left in coherent states. Unfortu-
nately, it is widely-known that programs which use several critical sections may
suffer from deadlocks (i.e., the program stands in an infinite wait).
In order to avoid deadlocks, three approaches have been traditionally used.

The first approach consists of detecting when a deadlock occurs and then re-
covering to a safe state (i.e., a previous state where the program is not dead-
locked) [10,7]. The second approach prevents deadlock states in execution time
using knowledge about the current state [3], in particular the state of the shared
resources and the pending demands. Finally, the third approach consists of per-
forming a “good” program design so that no deadlock states are reached. This
last approach, since it is done prior to the execution of the program, does not
require the evolution of its execution to be monitored [2,11,5,14,8].
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Our Work

In this paper, we focus on a potential approach for ensuring deadlock–freedom
(due to critical section access) in a transparent manner from the programmer’s
point of view (i.e., it does not force programmers to pay attention to deadlocks
when designing the program). That technique consists of using a number of oper-
ations to access some (artificially introduced) critical sections so as to guarantee
that deadlock states will not be reached. Furthermore, that technique does not
require monitoring program’s executions.
In particular, we use a program transformation which introduces some new

operations in the original program. As a result, it generates a deadlock–free “ver-
sion” of the original program which maintains its behavior. In turn, it may result
in a decrease of the program’s concurrency. However, we think that there are
many situations where programmers, in order to guarantee deadlock–freedom,
may accept a concurrency reduction in their program (which, on the other hand,
may be necessary if one wants to guarantee deadlock-freedom). We have used a
well–known problem (that of the dining philosophers) to show how our approach
behaves (see Section 5).
It must be noted that the only way to transform an existing program with-

out additional information (neither from programmers nor from runtime values)
consists of making use of static analysis. However, static analysis has several
limitations which come from its lack of runtime data and from its exponential
complexity. Consequently, the theoretical cost of our transformation are, in the
worst case, non-tractable. We have tested the programs in the SPLASH II bench-
mark suite [13] using a “brute force” static analysis algorithm (see Section 2)
and two of the applications were not analyzable due to lack of memory (on a
personal computer Intel Pentium III with 1 Gigabyte of main memory).

Related Work

One of the first works dealing with static analysis of deadlocks is that of Tay-
lor [15] where the author focus on blocking communications (rendezvous) in Ada
programs.
Following [15], Masticola [11] presents some algorithms to detect deadlock–

freedom in polynomial time. The work is also applied to Ada programs with
blocking communications, but it is shown how these techniques can be applied
to programs using binary semaphores to access shared resources. However, poly-
nomial cost is attained by relaxing the knowledge of state reachability, and con-
sequently it provides pessimistic solutions. Furthermore, neither [15] nor [11]
provide any hint about how to ensure deadlock–freedom in the case where pro-
grams may become deadlocked. Static analysis of Java programs, following pre-
vious cited works, can be found in [6,12] (our work could benefit of the analysis
presented in these references).
Maybe the only work (to the best of our knowledge) that focus on ensuring

deadlock–freedom by using a prevention transformations is that of Taubin et
al. [14]. By using their approach, the authors apply transformations to Petri net
models to reduce the cost of deadlock states detection. Unfortunately, the overall
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cost remains exponential and it may occur that they are unable to provide any
deadlock-free solution, even a pessimistic one.
In any case, we want to strength the goal of our work. The purpose is to

point out the chance for automatic deadlock prevention techniques. The work is
not specialized on static analysis of concurrent programs (it could complement
those approaches) nor it takes into account all possible sources of deadlocks (i.e.
accesses to replicated resources or cycles in data/control dependence as is the
case of blocking communications).
The rest of the paper is organized as follows. In Section 2 we provide some

definitions and we characterize when a program is deadlock–free. In Section 3,
we introduce a transformation for safely removing one “source of deadlocks”.
Based on this transformation, in Section 4 we propose a program transformation
algorithm which provides a deadlock–free version of a given program. An example
of how our approach behaves is presented in Section 5. Finally, in Section 6 we
present some concluding remarks.

2 Preliminaries

In this paper we use a simplified version of concurrent programs in which there
are only operations to access critical sections: a lock(cs) operation is used to ac-
quire the critical section cs and an unlock(cs) operation is used to release it. The
use of these synchronization operations are common in the most popular lan-
guages used in concurrent programming, such as Java, Ada, C, etc. Operations
are issued so that operations from the same process are executed sequentially.
We use the relationship ≺ to characterize the order in which operations from
the same process are intended to be executed. We also assume that a process
can not request any critical section which it already locks, nor it can release any
critical section which it does not lock.
Even though the model of programs seems quite restrictive, the conclusions

drawn about deadlock prevention methods can also be used to reason about
structured programs (i.e., programs that, besides sequential constructs, allow
loops and conditionals). A program with conditional constructs is equivalent to
a number of sequential programs covering all the possible paths that the different
execution flows may follow. Such a number of sequential programs, even though
it may be high, will be finite. Thus, it is enough to verify that every one of
those programs is deadlock–free to ensure that the program (with conditional
constructs) is deadlock–free. With regard to looping constructs, the situation is
simpler if each acquired critical section within a given iteration is released in the
same iteration1. That is because, for each one of the computations, the states
corresponding to the process that performs the loop will be repeated in each one
of the iterations, which allows us to treat loops as sequential constructs. A pre–
processor (using a “brute force” algorithm) to obtain, given a real structured
program, a set of programs such as those we consider, can be found in [1].
1 A very reasonable assumption since, otherwise, it may be difficult to ensure that

no critical section will be acquired/released more than once without it having been
released/acquired meanwhile.
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For our work, we will denote as opmatch the unlock operation intended to
release the critical section acquired by op (obviously op denotes a lock operation
from the same process that opmatch). Furthermore, we say an operation op =
lock(cs) is a wrapper of another operation op′, denoted op ∈ wrappers(op′), if
op ≺ op′ ≺ opmatch.

P1: op1 = lock(cs1) op2 = lock(cs2) op3 = unlock(cs1) op4 = unlock(cs2)
P2: op5 = lock(cs2) op6 = lock(cs1) op7 = unlock(cs2) op8 = unlock(cs1)

Fig. 1. A two–process program with 8 operations and 2 critical sections.

In Fig. 1, operations op3 and op4 are the respective matching operations to
op1 and op2. Also, op1 is a wrapper of op2, which is in turn a wrapper of op3.
Now, we introduce the “source of deadlock” (SoD) concept which is the key

definition for characterizing deadlock-free programs. However, first we will in-
troduce the “contemporariness” concept (on which the SoD definition is based).
Roughly speaking, a set of operations is contemporary if it is possible an exe-
cution with a state in which all operations in the set are “active” at the same
time.

Definition 1. A set of operations OP of a program P is contemporary if there
is at least one possible execution of P in which each operation in OP is the next
operation to be executed in its respective process.

It can be readily seen that operations op2 and op6 in Fig. 1 are contemporary.
It can also be seen that operations op3 and op6 are not contemporary since both
are in different accesses to critical section cs2.

Definition 2. Two disjoint sets of operations OP = {opi}i=1,...,n, n>1 and
OP ′ = {op′

i}i=1,...,n, n>1 form a source of deadlocks (SoD) if OP ′ is contem-
porary and ∀op′

i = lock(cs) (∃opi ∈ wrappers(op′
i) : op(i mod n)+1 = lock(cs)).

Note that this definition involves the existence of a set of critical sections
{csi}i=1,...,n, n>1 in which, for each section, there is a lock in both sets, OP
and OP ′. Otherwise, the set OP ′ would not be contemporary. The sets OP =
{op1, op5} and OP ′ = {op2, op6} in Fig. 1 form a SoD.
In [4], it is shown that programs are deadlock-free if and only if they do not

have any SoD2.

Theorem 1. A program is deadlock–free iff it does not contain any SoD.

2 There, the concept of stopper is used. This is equivalent to the definition of SoD
given here.
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3 A Transformation for Safely Removing One SoD

In this section it is proposed a program transformation which eliminates a SoD.
Our approach consists of breaking, for a given SoD {OP, OP ′} in the original pro-
gram, the contemporariness of operations in OP ′. For such a task, we only have
to ensure that at least a pair of operations in this set become non–contemporary.
We achieve that by adding two pairs of operations that access a new (artificially
introduced) critical section and that are wrappers of two different operations in
OP ′.

Transformation 1 Given a program P with a SoD d ≡ (OP, OP ′), we define
the non–contemporary transformation NonContemporary(d, P ) as one which
adds two accesses to a new defined critical section where each access contains
just one (different) operation in OP ′.

We will call opprev and op′
prev the lock operations introduced in the transfor-

mation NonContemporary().
However, this transformation does not guarantee that new SoD’s will not be

induced. An example can be seen in Fig. 2 (b).

P1: lock(cs′) lock(cs) unlock(cs′) lock(cs′) . . .

P2: lock(cs′) lock(cs) . . .

(a)

P1: lock(cs′) lock(cs) unlock(cs′) lock(csprev) lock(cs′) unlock(csprev) . . .

P2: lock(cs′) lock(csprev) lock(cs) unlock(csprev) . . .

(b)

P1: lock(csprev) lock(cs′) lock(cs) unlock(cs′) lock(cs′) unlock(csprev) . . .
P2: lock(csprev) lock(cs′) lock(cs) unlock(csprev) . . .

(c)

Fig. 2. In Fig. (a), the underlined operations form a SoD d. After applying transforma-
tion NonContemporary(d, P ) (Fig. (b)), the former SoD no longer exists. However,
the underlined operations form a new one. By also applying Lemma 1 (Fig. (c)), we
ensure that new Sod’s are not induced.

As the following lemma shows, if operations opprev and op′
prev have not any

wrapper, then no SoD is generated in the transformed program.
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Lemma 1. Let P be a program with a SoD d ≡ (OP, OP ′) and let us apply
NonContemporary(d, P ). If opprev and op′

prev do not have any wrappers then
no SoD is induced in the transformed program.

Proof: By contradiction. Assume that program P ′ is the result of applying
NonContemporary(d, P ). Assume also that opprev and op′

prev do not have
wrappers and that a new SoD (OP ′′, OP ′′′) has been generated.

Step 1: opprev or op′
prev are included in OP ′′ ∪ OP ′′′.

Proof: Let us assume that neither opprev nor op′
prev are included in OP ′′ ∪

OP ′′′. Thus:
1. All operations in OP ′′ ∪ OP ′′′ are in P .
Proof: Trivial since neither opprev nor op′

prev are included in OP ′′∪OP ′′′.
2. The operations in OP ′′′ are contemporary in P .
Proof: As (OP ′′, OP ′′′) is a SoD in P ′, then OP ′′′ is contemporary in P ′.
This set would also be contemporary in P since theNonContemporary()
only introduces new restrictions on the possibility of being contemporary.

Therefore, (OP ′′, OP ′′′) is a SoD in P , contradicting the assumption that
it is a new SoD generated in the transformation.

Step 2: Either opprev or op′
prev is included in OP ′′ and the other is included in

OP ′′′.
Proof: Immediate given the definition of SoD and the fact that they are the
only locks on the critical section defined in the transformation.

By Steps 1 and 2 we have that either opprev or op′
prev is in OP ′′′. Furthermore,

from the SoD’s definition, all operations in OP ′′′ have a wrapper. This contra-
dicts the assumption that neither opprev nor op′

prev have wrappers. Therefore,
(OP ′′, OP ′′′) is not a new SoD.

✷
Fig. 2 (c) shows an example of how this result is applied. It must be noted

that this is a simple example; in a general case only a part of a program is
executed sequentially.

Remark. Whereas there can be several approaches for providing a program trans-
formation capable to eliminate a given SoD, it has to be taken into account that
such a transformation must ensure that new behaviors will not be introduced
into the resulting program. Therefore, we can not use any technique based on
making internal changes (such as moving an operation from one location to an-
other) since they may not guarantee that the behavior of the program will be
affected. Note that our approach only reduces the set of potential executions.

4 A Transformation for Making Programs Deadlock–Free

In this section we introduce a transformation which provides deadlock-free ver-
sions of concurrent programs in a transparent manner. Such a transformation,
denoted DirectTransform(P ), is obtained by using NonContemporary(d, P )
and applying Lemma 1 directly. It uses the following functions:
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– GetSetofSoD(P ): returns the SoDs of program P .
– MoveBack(op, P ): swaps the operation op with its immediately preceding
one in the same process.

DirectTransform(P )::
D ← GetSetofSoD(P )
for each d ∈ D do
NonContemporary(d, P )
while wrappers(opprev) �= ∅ do MoveBack(opprev, P )
while wrappers(op′

prev) �= ∅ do MoveBack(op′
prev, P )

return P

Fig. 3. Algorithm of DirectTransform(P ).

Fig. 3 shows the algorithm of this transformation. The next theorem proves
that the program resulting from applying this algorithm is deadlock-free.

Theorem 2. Given a program P , the program resulting from
DirectTransform(P ) is deadlock-free.

Proof:

Step 1: In each iteration of the for loop, a SoD is removed without generating
a new one.
Proof: Immediate by Lemma 1. (Note that the number of iterations in the
while loops is finite since, in the worst case, opprev and op′

prev operations
would be placed in the first position of the respective process).

Step 2: The algorithm ends.
Proof: Immediate, since the number of SoDs of a program with a finite
number of operations is also finite.

By Steps 1 and 2, the transformed program is free of SoDs and by Theorem 1,
it is also deadlock-free.

✷
Regarding the complexity of DirectTransform(), it must be taken into ac-

count that function GetSetofSoD() has non-polynomial cost. That is because
it is hindered by the well–known state explosion problem: the number of states
in a concurrent system tends to increase exponentially with the number of pro-
cesses [15]. However, this problem can be solved by not checking the contempo-
rariness of OP ′ set (obviously, obtaining an approximate result3). In that case,
the cost of function GetSetofSoD() is to O(n+ p2c4 + p3), being n the number
3 The function, in this case, returns all SoDs but can also return some false SoDs.
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of operations of the program, p the number of processes and c the number of
critical sections used.
Whereas here we have introduced a transformation that directly applies

Lemma 1, other transformation can also be introduced. For instance, it can
be defined a new transformation that, whenever a SoD is eliminated, the oper-
ations opprev and op′

prev are selectively moved back, applying Lemma 1 only in
the worst case. This transformation would be more costly to apply (to eliminate
a SoD it must be checked that new SoD’s are not induced) but the resulting
program may have a lower reduction of its concurrency.

5 An Example

As it has been said previously, a drawback of applying the above mentioned
transformations is that they restrict the way in which processes can execute their
operations. Therefore, programs may suffer a loss on the number of states the
program can reach (from now called potential concurrency), which may become
in a loss on the program’s performance. In this section, we use the widely know
dining philosophers problem to show how our proposed transformations affect
the concurrency.
For our comparison we will take, first, the “classical” solution. By using this

solution, each philosopher, say philosopher i, locks sections csi and cs(i mod n)+1)
in order, except for one of the philosophers that operates in the opposite way. It
is known that this solution guarantees that philosophers will not get deadlocked.
On the other hand, we also use DirectTransform() to obtain a deadlock–

free version for the philosophers problem. As Fig. 4 shows, the version obtained
by using DirectTransform() has not a significant concurrency loss with re-
spect to the classical algorithm. However, whereas the classical solution burdens
programmers with a new task (i.e., finding that solution), by using one of our
transformation the algorithm is obtained in a transparent manner from the pro-
grammer’s point of view.

6 Conclusion and Future Work

In this paper we have introduced a method that provide deadlock-free versions
of concurrent programs in a transparent manner from the programmer’s point
of view. Even though the cost of the transformation is exponential, it can be
drastically reduced using a pessimistic approach.
There are some other issues, which we are currently working in, that

need further research. The decrease in concurrency that DirectTrasform()
provides depends on which operations are chosen to be synchronized in
NonContemporary(). So, it will be worthwhile to try different combinations.
Also, there are tools as [5,6] and [9] that can be used to check different program
properties as deadlock–freedom. So, it will be worth to study how integrate our
prevention techniques in such programming environments.
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Fig. 4. Relationship between the potential concurrency provided by using
DirectTransform() and the “classical” solution in the dining philosophers problem.
Only one iteration for each philosopher has been considered.
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