
A Parallel Framework for Computational Science

Fernando Rubio and Ismael Rodriguez*

Departamento de Sistemas Informiticos y Programacibn
Universidad Complutense, 28040 - Madrid, Spain
{fernando,isrodrig)@sip.ucm.es

Abstract. Parallel languages based on skeletons allow the programmer to ab-
stract from implementation details, reducing the development time of the paral-
lelizations of large applications. Unfortunately, these languages use to restrict the
set of parallel patterns that can be used. The parallel functional language Eden
extends the lazy functional language Haskell with expressions to define and in-
stantiate process systems. These extensions also make possible to easily define
skeletons as higher-order functions. By doing so, skeletons can be both defined
and used in the same language, using a high level of abstraction. Due to these
facts, the advantages of skeleton-based languages are kept in Eden, while we do
not inherit the restrictions they have, as the set of skeletons can grow as needed.
Moreover, in our approach the sequential code of the programs can be written in
any language supporting a COM interface.

Keywords: Parallel computing, skeletons.

1 Introduction

Due to the size of the applications in computational science, it is particularly important
to be able to take advantage of parallel architectures to reduce the computation time.
Unfortunately, conventional parallel programming languages use to require too much
programming effort to correctly implement the parallel versions of the applications.
Moreover, usually the parallelization of these programs heavily depend on the underly-
ing architecture. Thus, porting a program to a different machine is not a trivial task at
all.

Fortunately, during the last years several parallel languages (see e.g. [8,1,7] based
on skeletons have been developed. A skeleton [2] is a parallel problem solving scheme
applicable to certain families of problems. For example, the dividedconquer family can
be abstracted in a single skeleton. The specific functions to be performed in the nodes
of the process topology are abstracted as parameters. Thus, for instance, to parallelize
a mergesort it is enough to specify it in terms of the divide&conquer method, while the
actual parallel implementation will be delegated to the underlying skeleton.

The main advantages of using skeletons are two. Firstly, the parallelization effort is
reduced, as predefined skeletons can be used; secondly, the probabilities of errors are
reduced a lot, as the programmer does not need to handle all the gory details of the

* Work partially supported by the Spanish CICYT projects AMEVA and MASTER, and by the
Spanish-British Accibn Integrada HB1999-0102.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 1002−1011, 2003.
 Springer-Verlag Berlin Heidelberg 2003

A Parallel Framework for Computational Science 1003

parallelization. However, skeleton-based languages use to restrict the set of skeletons
available, so that all the programs must fit somehow a structure representable with those
available skeletons. Fortunately, the language we present in this paper allows the user
both to use predefined skeletons, and to define new ones. Let us remark that being able
to extend the set of skeletons is a very important issue, as programmers can add new
skeletons specific of their particular working areas.

In this paper we show how the Eden language can be used to define skeletons deal-
ing with any process topology. These skeletons will not only be simple schemes that
the programmer can follow: They will be actual programs parameterized by the code
that need to be executed in each processor. Moreover, the programmer will be able to
slightly modify the skeletons in case he want to include any characteristic particular to
his working area. Thus, for each area of computational science, it could be possible to
adjust the skeletons to the corresponding peculiarities.

Let us remark that, as Eden is a functional language, it is needed some knowledge
of the functional paradigm to understand how to define new topologies. However, it is
not necessary this knowledge to use the topologies, and it is even possible to modify
them with only some knowledge.

The rest of the paper is structured as follows. In the next section we introduce the
basic features of our language, while in Section 3 we present how we can use our lan-
guage to develop generic topologies. In Section 4 we show the actual speedups obtained
with one application running in a Beowulf architecture. Finally, in Section 5 we present
our conclusions.

2 The Eden Language

Eden [9,6] extends the (lazy evaluation) functional language Haskell [11] by adding
syntactic constructs to explicitly define processes. A new expression of the form
process x -> e is added to define a process abstraction having variable x as in-
put and expression e as output. Process abstractions can be compared to functions, the
main difference being that the former, when instantiated, are executed in parallel.

Process abstractions are not actual processes. In order to really create a process, a
process instantiation is required. This is achieved by using the predefined infix operator
#. Given a process abstraction and an input parameter, it creates a new process, and it
returns the output of the process. Each time an expression el # e2 is evaluated, the
instantiating process will be responsible for evaluating and sending e2, while a new
process is created to evaluate the application (el e2).

Once a process is running, only fully evaluated data objects are communicated. The
only exceptions are lists, which are transmitted in a stream-like fashion, i.e. element by
element. Each list element is first evaluated to full normal form and then transmitted.
Concurrent threads trying to access not yet available input are temporarily suspended.
This is the only way in which Eden processes synchronize. Notice that process creation
is explicit, but process communication (and synchronization) is completely implicit.

In addition to the previous constructions, a process may also generate a new dy-
namic channel and send a message containing its name to another process. The receiv-
ing process may then either use the received channel name to return some information

to the sender process (receive and use), or pass the channel name further on to another
process (receive andpass). Both possibilities exclude each other, to guarantee that two
processes cannot send values through the same channel.

Eden introduces a new expression new (chname, chan) e which declares a new
channel name chname as reference to the new input channel chan. The scope of both is
the body expression e. The name should be sent to another process to establish the com-
munication. A process receiving a channel name chname, and wanting to reply through
it, uses an expression chname ! * el par ez . Before e2 is evaluated, a new concurrent
thread for the evaluation of el is generated, whose result is transmitted via the dynamic
channel. The result of the overall expression is ea, while the communication through
the dynamic channel is a side effect.

Let us remark that it is trivial to extend the previous constructions to provide func-
tions that deal with list of dynamic channels. For instance, the following function creates
a list of n dynamic channels, where [I denotes an empty list, while x : xs is a list with
x as head, and with xs as tail:

generatechannels 0 = [I
generatechannels n = new (cn,c) ((cn,c) : generatechannels (n-1))

while the next function sends a list of values through their dynamic channels, and re-
turns the evaluation of its second argument:

sendvalues [I e = e
sendvalues ((v,ch):more) = ch ! * v par sendvalues more e

In most situations -in particular in all the topologies presented in this paper-
by using only process abstractions and instantiations it is possible to create the same
topologies that could be created by using dynamic channels. However, dynamic chan-
nels can be used to optimize the efficiency of the implementations. In this sense, this
feature can be seen as an optimization using a low-level construct provided by the lan-
guage rather than as a radically new concept.

Let us remark that, in contrast to most parallel functional languages, Eden includes
high-level constructions both for developing reactive applications and for dynamically
establishing direct connections between any pair of processes. This allows handling
low-level parallel features that cannot be used in conventional functional languages.
Thus, Eden provides an intermediate point between very high-level parallel functional
languages (whose performance use to be poor), and classical parallel languages (which
do not allow using high-level constructions). We do not claim that Eden can obtain
optimal speedups, but it can obtain quite acceptable speedups with small programming
effort.

Eden's compiler1 has been developed by extending the most efficient Haskell com-
piler (GHC [4,10]). An important feature of Eden's compiler is that it reuses GHC's
capabilities to interact with other programming languages. Initially, GHC only allowed
to include C code, but currently it also provides a COM interface. Thus, the sequential

' The compiler can be freely downloaded from ht tp : / /www . mathemat ik . uni -
marburg.de/inf/eden

1004 F. Rubio and I. Rodríguez

parts of our programs could be written in any language supporting COM interfaces. So,
Eden can be used as a coordination language, while the computation language can be,
for instance, C.

In order to easily port the compiler to different ar~hitectures,~ Eden's runtime sys-
tem has been designed to work on top of a message passing library. In the current
compiler, the user can choose between PVM [3] and MPI [13].

3 Defining Topologies

In this section we present how processors topologies can be expressed in Eden. For the
sake of clarity, we start presenting the most simple skeleton (map), then we introduce
an example of how to define a simple topology of processors (a ring), which can be
easily extended to deal with other typical topologies as a grid or a torus. After this
introductory example, we present how to define a general topology dealing with any
graph of connections amongst processors.

3.1 Defining Simple Skeletons

Let us remark that process abstractions in Eden are not just annotations but first class
values which can be manipulated by the programmer (i.e. passed as parameters, stored
in data structures, and so on). This facilitates the definition of skeletons as higher order
functions. The most classical and simple skeleton is map. Given a list of inputs xs, and
a function f to be applied to each of them, the Haskell specification is as follows:

This can be trivially parallelized in Eden using a different process for each task:

m a p q a r f xs = [pf # X I x <- XS]
where pf = process X -> f x

The process abstraction pf wraps the function application (f x) . It determines that
the input parameter x as well as the result value will be transmitted on channels.

Let us remark that developing skeletons in Eden is relatively easy. Due to the lack
of space, we only show the simplest example, but many other skeletons have already
been implemented, and in most of the cases their source code fit in half a page. Details
about their.implementation can be found in [12].

3.2 Ring Topology

A ring is a well-known topology where each process receives values from its left neigh-
bor and sends values to its right one. Additionally, the first and last processes are also

Currently, we have tested it on Beowulf clusters of up to 64 processors running Linux, on
clusters of workstations running Solaris, and on a shared memory UltraSparc machine running
also Solaris.

1005A Parallel Framework for Computational Science

Fig. 1. A ring topology

considered to be neighbours, to form a real ring. In addition to that, all the processes
can communicate with the main one - See Figure 1. This topology is appropriate for
uniform granularity algorithms in which the workers at the nodes perform successive
rounds. Before the first round, the main process sends the initial data to the workers.
After that, at each round, every worker computes, receives messages from its left neigh-
bour, and then send messages to its right neighbour. Eden's implementation uses lists
instead of synchronization barriers to simulate rounds.

In order to create the topology, the skeleton receives two parameters: the worker
function f that each of the processes will perform, and the initial list of inputs that
will be provided initially to the processes. Let us remark that the length of such list will
be the same as the number of processes in the ring. Let us also remark that the function
f receives an initial datum from the parent and a list of data from the left neighbour,
and it produces a list of data for its neighbour and a final result for its parent. In the
following piece of code (that includes the whole skeleton), the ring function creates
the desired topology by properly connecting the inputs and outputs of the different
pring processes. As we want processes to receive values from its previous process, it
is only necessary to shift the outputs of the list of processes before using them as inputs
of the same list. Each pring receives an input from the parent, and one from its left
sibling, and produces an output to the parent and another one to its right sibling:

ring f inputs = outsToParent where
outs = [(pring f) # outA1 I outA' <- outs' I
(outsToParent,outsA) = unzip outs
outsA1 = last outsA : init outsA
outs' = zip inputs outsAf

pring f = process (fromparent, inA) -> out
where out = f (fromparent, in^)

The previous definition can be optimized by using the lower level constructions of
the language, that is, the dynamic channels. Fortunately, it is not neccessary to repeat the
design, as we can take advantage of the methodology defined in [12] to automatically

1006 F. Rubio and I. Rodríguez

Fig. 2. A graph topology

transform high level definitions into lower level ones. The main idea of such transfor-
mation (not shown due to lack of space) is that a new dynamic channel is created by
each process desiring to receive a value, and the name of such channels are to be sent
to the producers of the values. Thus, by applying the transformation, now each pring
receives an input from the parent, and a channel name to be used to send values to its
sibling, and produces an output to the parent and a channel name to be used to receive
inputs from its sibling, as shown below.

pring f = process (fromParent,outChanA) -> out
where out = new (inChanA, inA)

let (toParent,outA) = f (frornParent,inA)
in outChanA ! * outA par (toParent,inChanA)

Let us remark that it is trivial to extend the ring skeleton to deal with two-dimensions.
In fact, in [12] it can be found the definition of several topologies, like a grid or a torus.

3.3 A General Graph

In order to proof the expressive power of our approach, we will now describe the most
general topology: a graph of processes. Let us remark that conventional skeleton-based
languages do not provide such a topology, even though it is becoming more and more
important. Traditionally, parallel computers only used specialized topologies, and a gen-
eral graph was not very unuseful. However, nowadays due to the wide implantation of
the ~nternet, parallel computation is not restricted to specialized expensive architectures:
several standard computers connected to the web can cooperate in the computation of
a single problem. So, the actual topology they are using is a general graph. Thus, a
parallel language should facilitate the use of such topologies.

As in the previous examples, in order to define a graph, we need to take care of two
tasks: Defining the behaviour of the processes, and defining the connection topology. In
this case, we will directly present the optimized implementation using dynamic chan-
nels, which has been obtained taking as basis the corresponding definition using only
process abstractions and instantiations, as in the ring case.

1007A Parallel Framework for Computational Science

Each process will be identified by a unique number, and its behaviour will be pa-
rameterized by the function to be computed, and by the list of identities of the processes
that have direct connections with it. The source code is the following, where the process
uses generatechannels to create as many dynamic channels as input connections are
needed, while sendvalues is used to actually send the output values:

pabs i f senders = process chansOut -> sends
where channelsIn = generatechannels (length senders)

(narnesIn,valuesIn) = unzip channels
valuesout = f valuesIn
sends = sendvalues (zip ChansOut valuesout)

(zip narnesIn senders)

Let us remark that there must be an initial process in the graph, as shown in Figure 2.
The difference with the other processes is that it will receive the inputs of the problem,
and it will return the outputs. That is, it will be the interface of the topology with the
outside world. The definition of this initial process is done in the same way as a normal
one, but receiving an extra input ins and producing an extra output value outs:

pabsO f senders = process (chansOut,ins) -> (sends,outs)
where channelsIn = generatechannels (length senders)

(narnesIn,valuesIn) = unzip channels
(outs:valuesOut) = f (ins:valuesIn)
sends = sendvalues (zip ChansOut valuesout)

(zip narnesIn senders)

Once the basic processes have been defined, we only need to properly connect them.
In order to do that, we need as parameters the list of functions f s to be computed by
each process, the list of connections c amongst processes, and the inputs ins of the
initial process. In order to access to the function that process i should perform, it will
be enough to use the predefined operator ! ! , that extracts the i-th element from a list.
The connection topology only need to create n - 1 normal processes, and one extra
initial process. After doing that, function reorganize uses the information encoded
in the list of connections in order to establish them in the right way:

graph fs c ins = outs where
sendss = [(pabs i (f s ! ! i) (senders i)) # (receivers ! ! i)

I i <- [l. .n-111
(sends0,outs) = (pabsO (is! !O) (senders 0)) # (receivers! !O, ins)
senders i = map fst (filter ((= = i) .snd) c)
receivers = reorganize (sends0:sendss)
reorganize xss = toList2 . sort2 . concat
n = length fs

Let us remark that, even though it could seem that the previous program is complex
to understand, it is not really important to understand the details of it. The important
thing is that it can be written in a compact way and, most importantly, it can be used
without understanding it: It will only be necessary to pass as parameters the list of
connections, and the list of behaviours.

1008 F. Rubio and I. Rodríguez

1009A Parallel Framework for Computational Science

4 Measuring an Application: Interactions amongst Particles

number of PEs

Fig. 3. Speedups of pair interactions

force xs = ring (force' np) (splitIntoN np xs)
force1 np (loca1,ins) = (tota1,outs)
where outs - -

total - -
f acums news =
f orcess - -

faux xs y =
surnForces 1 =

take (np - 1) (local : ins)
foldll' f forcess
zipwith addForces acums news
[map (faux ats) local I ats <- (1ocal:ins)l
sumForces (map (forcebetween y) xs)
foldl' addForces nullvector 1

Let us remark that it has not been necessary to deal with processes in the definition
of the example. Let us also remark that the definition of force could have been done
in other programming language, as C. In fact, the efficiency could be improved not only
by using a more efficient language, but also by using more efficient algorithms. The
important point is that the main difficulty will be finding the right sequential solution,
while parallelizing it will not require much effort.

Figure 3 shows the speedups obtained using 7000 particles, the sequential execu-
tion time being 194.86 seconds. As we pointed out when presenting the language, the
speedups obtained are acceptable. In fact, in this particular example the speedups are
quite good, although in other examples with less inherent parallelism the speedups are
not so high. Anyway, our results are always competitive with those obtained by using
C+MPI: Although slightly slower when running, our applications are developed much
faster.

5 Conclusions

In this paper we have presented a framework that facilitates the task of parallelizing
large applications. By using our language, the programmer can concentrate on the de-
velopment of the sequential applications, while the parallelization effort will be min-
imized. The main advantage of our language is the combination of high-level facili-
ties (that enable fast development) and lower-level constructions (that improve the effi-
ciency).

1010 F. Rubio and I. Rodríguez

The experiments we have performed so far are encouraging. As it can be seen in [5] ,
our efficiency is always comparable to that obtained by using C+MPI: Although our re-
sults are always slightly worse, the programming effort needed is much smaller. It is
important to remark that in [5] we have already compared the efficiency of Eden and
other two parallel languages: GpH [14] and PMLS [7]. The first one represents the state
of the art in parallel functional programming, while the second one is a good represen-
tative of the skeletons community. The results obtained were encouraging: Even though
we are still working on optimizing our Eden compiler, the runtimes obtained were better
(on average) than those obtained with the other (more mature) languages.

References

1. G. H. Botorog. High-Level Parallel Programming and the EfJicient Implementation of Nu-
merical Algorithms. PhD thesis, RWTH-Aachen, January 1998.

2. M. Cole. Algorithmic Skeletons: Structure Management of Parallel Computations. MIT
Press, 1989. Research Monographs in Parallel and Distributed Computing.

3. A. Geist, Ad. Beguelin, J. Dongarra, and W. Jiang. PVM: Parallel Virtual Machine. MIT
Press, 1994.

4. S. L. Peyton Jones, C. V. Hall, K. Hammond, and W. Partain. The Glasgow Haskell Com-
piler: a Technical Overview. Department of Computer Science, University of Glasgow, De-
cember 1992.

5. H. W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen, G. J.
Michaelson, R. Peiia, A. J. Reb6n Portillo, S. Priebe, and P. W. Trinder. Comparing Par-
allel Functional Languages: Programming and Performance. Higher-Order and Symbolic
Computation, 2003. To appear.

6. R. Loogen, Y. Ortega-MallCn, R. Peiia, S. Priebe, and F. Rubio. Parallelism Abstractions
in Eden. In F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons for Parallel and
Distributed Computing, pages 95-128. Springer-Verlag, 2002.

7. G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested Algorithmic Skeletons from
Higher Order Functions. Journal of Parallel Algorithms and Applications, 16:181-206, Au-
gust 2001.

8. S. Pelagatti. Structured Development of Parallel Programs. Taylor and Francis, 1998.
9. R. Peiia and F. Rubio. Parallel Functional Programming at Two Levels of Abstraction. In

PPDP'OI, pages 187-198. ACM Press, September 2001.
10. S. L. Peyton Jones. Compiling Haskell by Program Transformation: A Report from the

Trenches. In ESOP'96 - European Symposium on Programming, volume 1058 of LNCS,
pages 18-44, Linkoping, Sweden, April 22-24, 1996. Springer-Verlag.

11. S. L. Peyton Jones and J. Hughes. Report on the Programming Language Haskell98. Tech-
nical report, February 1999. http: //www. haskell . org.

12. F. Rubio. Programacidn Funcional Paralela Ejiciente en Eden. PhD thesis, Dpto. Sis-
temas Informiticos y Programaci6n. Universidad Complutense de Madrid (Spain), Novem-
ber 2002. In Spanish.

13. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The Complete
Reference. MIT Press, Cambridge, MA, USA, 1996.

14. P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and S. L. Peyton Jones. GUM:
a Portable Parallel Implementation of Haskell. In Programming Language Design and Im-
plementation (PLD1196), pages 79-88. ACM Press, 1996.

1011A Parallel Framework for Computational Science

	Introduction
	The Eden Language
	Defining Topologies
	Defining Simple Skeletons
	Ring Topology
	A General Graph

	Measuring an Application: Interactions amongst Particies
	Conclusions
	References

