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Abstract. Interprocess communication (IPC) is an important phenomenon in
distributed computing and operating systems. Microkernels of modern
operating systems use synchronous IPC semantics for every individual process.
On the other hand, a process may exploit non-blocking IPC semantics. In either
case, the controlling mechanism belies in the hand of the underlying operating
system. IPC monitors open up for misinterpretation of IPC timeout events due
to thread unavailability in dynamic multithreaded systems. In this paper we
propose a software architecture applicable to distributed systems, which confers
the decision on IPC semantics during execution to the processes so that they can
admix blocking and non-blocking semantics in a flexible way, case by case, as
needed. Moreover, the concept of thread pool is introduced to eliminate the
possibility of misinterpretation of IPC timeout events by monitors. Worker
threads in a thread pool are effectively scheduled to minimize the waste of
processing time and dynamic thread overhead. Event driven and multithreaded
system models are diagonally opposite during execution. However, our
architecture utilizes the benefits of an event driven model with that of a
multithreaded model in a fruitful manner to exploit concurrency and protection.
The software implementation of our proposed architecture is made as a
middleware extension on the communication subsystem of Windows operating
systems.

1   Introduction

Interprocess communication (IPC) is one of the most common concepts used in
operating systems (OS) and distributed computing systems. It deals with how multiple
processes can communicate among each other. In a distributed system, cooperating
processes communicate by sending messages. High performance communication is a
very critical facility in the distributed computing systems [3]. On the other hand, IPC
monitoring enables the examination of any IPC between the source and destination
machines [4]. Monitoring of IPC is useful for debugging, logging and security
purposes. However, the performance of IPC and monitors is heavily dependent on the
IPC semantics and protocols used to implement them [3]. Unfortunately, the IPC
mechanism has been considered an expensive operation in the recent past [5].
However, “extensibility” has become an important phenomenon in OS research [5],
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and new IPC mechanisms along with monitors are being implemented as extensions
of the basic kernel. There exists two main semantics in implementing IPC; i.e.
synchronous and asynchronous. Such synchrony features are solely controlled by the
underlying operating system [2]. In modern microkernels, synchronous IPC semantics
is used [4]. This indicates that the communicating process gets blocked until the
message is delivered to the destination or an error occurs. This method often leads to
an unnecessary waste of execution time. In addition, every IPC message is stamped
with a source specified timeout value. Unfortunately, a monitor may disrupt the
interpretation of such timeout values if it does not have a thread ready to send or
receive the message [4]. Eventually this leads to a loss of transparency of the IPC
mechanism.

In this paper, we investigate a different scheme for IPC semantics and its realization,
which encompasses a new control mechanism of IPC synchrony and concurrency. In
effectively protected environments, we can provide flexible message synchronization
relying on decisions taken by processes engaged in IPC. We provide a flexible and
reliable mechanism so that individual processes may decide whether they should
block for a message delivery and reception, or continue while processing the IPC as a
background task. In addition, IPC concurrency is achieved in a better way using the
event driven programming model by reducing opportunities for race conditions and
deadlocks [1]. We establish an event driven and multithreaded architecture to exploit
the benefits of both system models. The projected software architecture achieves the
following set of benefits:

• Design flexibility: Our architecture assigns the synchronization decision authority
to the processes themselves. Hence, they are allowed to generate individual jobs using
different synchronization semantics and will be notified on the outcome of IPC events
job by job. This adds a good amount of design flexibility to software applications.

• Unwanted blocking time elimination: Due to admixing blocking and non-blocking
IPC events at the application level, the applications can save execution time by
eliminating unwanted waiting for message delivery and response in some specific
cases.

• Elimination of misinterpreted timeout by monitors: The proposed architecture
uses a thread pool concept that eliminates the overhead of creating numerous dynamic
threads while handling IPC requests in a multiprocessing environment. Hence, our
software architecture eliminates the possibility of misinterpreting timeout events due
to message delivery/response.

• Combining benefits of event driven and multithreaded concurrency: The
designed software middleware treats the IPC requests as discrete events. Hence,
processes get immediate attention on IPC events. An event driven approach makes it
easier to ensure protection against race conditions and deadlocks [6]. On the other
hand, due to our multithreaded model, the benefit of execution concurrency is
achieved.
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• Efficient CPU utilization: The threads are scheduled by the middleware, and this
scheduling is based on IPC event generations or completions. Such a scheduling
ensures that idle threads will never spend unnecessary processor time cycles.

The remainder of our paper is composed as follows. In section 2, we define different
IPC semantics and different programming models. In section 3, we construct a model
for application controlled synchrony. This establishes a software architecture
combining the multithreaded and event driven IPC paradigms and introduces the
thread pool concept. In section 4, we describe our implementation and related data
structures. In section 5, we conclude the paper.

2   IPC Semantics and Programming Models

A good interprocess communication facility is central to any distributed system and
provides access to resources distributed over a network in a uniform manner.
Generally, the primitives used for IPC are message passing, remote procedure call
and transaction communication. In the case of message passing, a set of messages is
communicated among coordinating processes. At the lowest level, message passing is
the only means of communication in distributed systems [9]. But communication
transparency is desirable by providing a higher level of abstraction. The remote
procedure call (RPC) concept may be used to achieve this goal [9]. The RPC
mechanism is built on top of a client/server model and is widely used. Finally, service
oriented request/reply communication and multicast may be combined to form a third
level, transaction communication. The transaction communication depicts a set of
asynchronous request/reply messages without sequential constraints like transactions
in a database [9]. All these primitives are mainly based on two different types of
semantics; i.e. synchronous and asynchronous communication.

2.1   IPC Semantics and Monitors

The presence of monitors complicates the exploitation of synchronous/asynchronous
communication. Three possible cases may arise [4]: (1) IPC monitors may change the
identity of source and destination, (2) Monitors may wish to hide the timing of the
destination’s receipt of the request from a source, and (3) Monitors themselves may
be of different trust levels. Hence, desirable aspects associated with IPC are
reliability, error handling and timeout expiry handling. In addition, IPC monitors may
redirect the IPC request in some cases [8].

2.2   Programming Models

An event driven programming model simplifies concurrency issues by reducing the
risks for race conditions and deadlocks [6]. On the other hand, a multithreaded
programming model ensures readability and maintainability of code [1]. The sources
of conflation for task management and stack management are identified in [1]. The
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event driven programming model suggests that the gain in concurrency cannot be
achieved without manual stack management, which is difficult to attain. However,
with these two diagonally opposite programming paradigms, one can cautiously
combine the advantages of both models [1].

3   Synchrony, Events, and Worker Threads

Usually, the issues related to IPC synchronization are controlled by the operating
system, while the processes use this as a service. Modern OS microkernels implement
synchronous IPC semantics [4]. But in some cases, allowing processes to decide
about synchronization adds a lot of operating flexibility. In addition, it saves
unnecessary blocking time in particular cases and helps a process to admix blocking
and non-blocking semantics, as it needs during execution. Moreover, it is possible to
combine the advantages of an event driven architecture with that of a multithreaded
model to increase execution concurrency of multiple IPC requests on a timeshared
basis. We use the thread pool concept to eliminate the overhead of dynamic thread
creation and related timeout events.

3.1   Application Controlled Synchrony Model

Modern microkernels use synchronous IPC semantics where a source is blocked until
the destination is ready or an error occurs. We have designed a modified architecture
where the application or source process can decide, any time during execution,
whether to get blocked until the destination process receives the message, or to
proceed executing after the message is queued in the system. The calling process
decides this while invoking an IPC event. Hence, the process may explicitly control
IPC semantics. The task of the operating system will be to provide a uniform interface
for message delivery and to report to the calling process about the result. The result
may be success or failure. But the message synchrony decision will belong to the
calling task.

3.2   Event Driven Architecture

As event driven and multithreaded concurrency models are diagonally opposite, we
have tried to combine the advantages of both models. A compromising approach is
cooperative threads management. The proposed software architecture is based on an
event driven system model. The new approach to achieve cooperative thread
management is to organize a system as a collection of event handlers. Hence, sending
or receiving a message are two distinct events, and are attached to corresponding
event handlers. Every process will have two distinct event handlers to get the result
notification from its worker threads.  Hence, we consider the “SendRequest” and
“WaitResponse” operations as two distinct operations invoked by any process.
Moreover, this will allow the IPC subsystem to process multiple blocking and non-
blocking IPC events concurrently exploiting event driven multithreading. Our
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architectural model employs a three-tire middleware extension of a communication
subsystem. The three different levels are as follows: level 1: the processes; level 2: the
IPC subsystem; level 3: the thread pool. Hence, there exists two interfaces i.e.,
process to IPC subsystem interface (level 1-level 2) and IPC subsystem to thread pool
interface (level 2-level 3). The interaction among the three levels is shown in
Figure 1.

Fig. 1. Three-tire interaction model

During system initialization, level 3 creates a pool of suspended threads, and the
thread stacks are initialized. After receiving confirmation from level 3 about
successful creation of system resources (thread pool and thread stacks), level 2 creates
its own data structures and becomes ready to handle IPC events. As shown in Figure
1, a process must register before requesting any IPC operation, and the process should
nominate two event handlers. On successful registration, unique Process IDs will be
returned to the individual processes for future use, and two threads will be allocated
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from the pool to each registered process. Registered processes belong to level 1 and
may generate an IPC event explicitly indicating the type of event (BLOCK or
NOBLOCK) as shown in Figure 1. Depending on the event types, level 2 schedules
the threads to accomplish the requested service. On completion, the thread can notify
the result either to level 2 or to level 1, depending on the type of IPC event. Thread
allocation belongs to level 3, but scheduling allocated threads in various phases, and
its status maintenance, belongs to the level 2. This event driven design ensures
immediate thread scheduling upon the arrival of an IPC request, and prevents idle
threads from gaining CPU resources. When a thread notifies level 2 about the end of a
requested service, the scheduler in level 2 changes the thread state to suspended and
marks it as idle. Hence, no idle thread uses any excess CPU cycles. In addition, our
event based system model reduces the occurrence of race conditions and deadlocks.
Detailed descriptions of the necessary data structures and algorithms are given in
Section 4.

3.3   Concurrent Thread Pool

Our concurrent thread pool is a pool of threads in suspended state. For each send and
receive operation, allocated working threads from the thread pool are responsible for
completing the operations concurrently. Every thread in the pool has an individual
thread stack. The thread pool is considered as a system resource containing suspended
threads. When a process registers in the IPC subsystem, two working threads are
allocated (by level 3) and the thread stacks get initialized. In addition, two job queues
(one “JobQ” for “SendRequest” method and another “JobQ” for “WaitResponse”
method) are allocated to each registered process (by level 2). In this model, a thread
Tr acts on the receive “JobQ” of a process P and the other thread Ts acts on the send
“JobQ” of the process P. When process P exits, Tr and Ts are returned to the thread
pool in a suspended state. Our multithreaded event driven IPC system is capable of
handling multiple requests concurrently for all processes without contention, and frees
the system from the burden of dynamic thread creation, which may lead to
misinterpreted timeouts in IPC monitors [4]. Additionally, allocated threads are
efficiently scheduled to minimize consumption of unnecessary CPU resources.

4   Implementation Issues

We have implemented this application controlled synchrony in our event driven
multithreaded execution model as a middleware on top of a sockets based
communication subsystem of Windows OS. The data structures, interface definitions
and algorithms of our experimental middleware are described below. The overall
software architecture is presented in Figure 2.

4.1   Data Structures

The important data structures are described below.

• Job queue (JobQ): The JobQ data structure is used to queue the job requests for
send or receive generated by processes. Every process has two distinct queues of
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finite length, one for “SendRequest” and one for “WaitResponse”. The main
members of JobQ are “JobNo”, “Status” and “Type”. “JobNo” represents the
job sequence number assigned by the calling process. While “Status” and “Type”
indicate the status of the job (serviced or pending) and nature of call (blocking or non-
blocking as requested by the calling process) respectively.

Fig. 2. Three-tire software architecture

• Private data for thread (PDT): Every working thread in the thread pool contains
this on their individual thread stacks. One of the main members is
“ProcessStackNo”, representing the index in the process table. This field is used
to get the entry points of the event handlers (eh) of the calling process. The member
“pThreadJobQueue” holds a reference to the job queue (send or receive) on which
the thread should act. Further, the member “ThreadIndex” gives the index for the
associated thread. Finally, the member “pThreadStateInfo” holds the entry
point in the IPC subsystem for this thread.

• Common thread structure (CTS): This data structure is used to register the
context of every thread. The main members of this structure are “ThreadHandle”
representing a handle to the thread and “ThreadState” representing the execution
mode of the thread at any point of time. While the member “ThreadIntifier” is
used to store the identifier assigned by the underlying OS and is used to access the
thread from level 2 in the middleware.
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• Process table (PTS): The execution context of every registered process is stored in
this object. Among its members are “ProcessID”, “ProcessEventHandler”,
“pThreadAlloc” and two JobQs. The member “pSendJobQueue” represents the
job queue used by the “SendRequest” method and “pRecvJobQueue”
represents the same for the “WaitResponse” method. The field “ProcessID”
holds the distinct process ID assigned to any registered process. The
“ProcessEventHandler” holds the event handler entry points for processes to
notify the result of an IPC asynchronously. The member “pThreadAlloc” holds a
reference to the global thread data of the threads attached to this process.

4.2   External Interface Definitions

The interface offered by our experimental middleware is given below.

• RegisterProcess():This function is used to register a process in the IPC
subsystem. It takes the entry points of process event handlers as the arguments and
returns a unique “ProcessID”.

• SendRequest(): This function is used by a process to send a message to
another process. The “Option” argument of the function shall be “BLOCK” or
“NOBLOCK” to indicate that it is a blocking or non-blocking call.

• WaitResponse(): This function is used to raise an exception, i.e. IPC event, by
a registered process in order to receive/wait for a response message. The “Option”
argument of the function shall be “BLOCK” or “NOBLOCK” to indicate that it is a
blocking or non-blocking call.

4.3   Internal Interface Definitions

The main interlayer functional components are:

• CreateResource():This function is responsible for resource allocation and
initialization. It belongs to level 3. It returns “Success” or “Failure”.

• WorkerThread():This function describes the worker thread procedure. It
belongs to level 3. It returns “Null”.

• NotifyIPC():This function is used by threads to notify level 2 about the end of
a requested IPC service. In level 2, the thread scheduler gets invoked, and the thread
is transferred into the suspended state and marked as idle.

4.4   Algorithms

The main algorithmic parts to accomplish our IPC system model are depicted in the
following procedural steps.
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//System initialization
Proc SysInit:
  begin
    Create_Process_Table;
    Create_Thread_Pool;
    Init_Thread_Stack;
    Regd._Callback_Level2;
    Suspend_All_Threads;
  end begin

//Process registration
Proc RegisterProcess:
  begin
    Update_Process_Table;
    Create_Job_Queues;
    Allocate_Thread;
    Init_Thread_Stack_Data;
  end begin

//Worker thread functions
Proc WorkerThread:
  begin
    Check_Private_Data;
    do
      Pick_From_Job_Queue;
      Invoke_IO;
        if(!Blocking)
          Send_Evt_Process;
        end if
      Clean_Up_Memory;
      Send_Evt_To_Level2;
    end do
  end begin

//SendRequest or
//WaitResponse events
Proc Send/Wait:
  begin
    Enqueue_Job;
    Activate_Thread;
      if(Blocking)
        Wait_Thread_Event;
      else
        Return_Result;
      end if
  end begin

5   Conclusions and Future Work

Our application controlled synchrony and event driven multithreaded IPC model
enable concurrent message handling. As a pool of threads is created in the system
beforehand, threads may be allocated to the processes on demand. This eliminates the
overhead of creating threads dynamically while handling IPC requests. Hence, our
proposed architecture eliminates the possibility for misinterpretation of timeout events
due to non-availability of threads. In addition, our software architecture enables the
processes to admix blocking and non-blocking IPC semantics in a flexible manner as
the decision authority belongs to the processes. By admixing blocking and non-
blocking IPC semantics, the processes save execution time by eliminating unwanted
waiting for message delivery in some specific cases. Due to the event driven
behaviour of the proposed model, immediate attention to IPC requests is achieved. In
this software architecture, we have tried to combine the advantages of event driven
systems and the multithreaded programming model. The event driven approach makes
it easier to reduce the possibilities for race conditions and deadlocks. On the other
hand, our architecture achieves the benefit of concurrent execution through
multithreading. However, the thread scheduling mechanism relies on the middleware
(level 2), and such scheduling is done on the basis of an IPC request or the completion
notification of an IPC event from a worker thread. In this way we ensure that idle
threads will never employ unnecessary processor cycles. When a process expires or
exits, the workers threads previously allocated to this process returns to the thread
pool.
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The challenge of our execution model is that suspended threads preoccupy
resources such as memory. Although such a waste is not dominant, processes may not
use the entire thread population at any time. So, there may always be a few idle
threads in the pool. On the other hand, if the system contains numerous processes,
then the total thread population in pool may not be large enough to serve all the
processes. We are currently investigating modifications to our present implementation
to eliminate such difficulties.
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