
ToCL: A Thread Oriented Communication
Library to Interface VIA and GM Protocols

Albano Alves1, António Pina2, José Exposto, and José Rufino

1 Instituto Politécnico de Bragança,
Campus Sta. Apolónia, 5301-857 Bragança-Portugal

albano@ipb.pt
2 Universidade do Minho,

pina@di.uminho.pt

Abstract. In this paper we present ToCL a thread oriented commu-
nication library specially designed to fully exploit multithreading in a
multi-networked cluster environment. ToCL provides a basic set of prim-
itives to handle zero-copy message passing between application threads
spread among cluster nodes. Large messages are fragmented and sent
to remote threads as single messages using multiple low-level communi-
cation subsystems. The current implementation supports both Myrinet
through GM and Gigabit Ethernet through VIA but we plan to extend
it to other communication subsystems.

Keywords: multithreading, message-passing, intermediate-level library.

1 Introduction

With the advent of commodity SMP workstations and high performance SANs it
became possible to do parallel computation at low cost. However, to fully exploit
such power we need new programming models.

Multithreading and message-passing are two well-known techniques that may
be combined to build appropriate platforms to use in a cluster of multi-processor
machines.

1.1 Low-Level Communication Libraries

The increasing processors performance stressed the need of higher speed com-
munication subsystems to achieve low-overhead calls to access the network.

User-level communication libraries are used to interface network adapters di-
rectly bypassing the operating system. Usually, these libraries provide a low-level
interface for data exchange between processes executing in networked machines
avoiding memory copies – zero-copy message transfers.

However, user-level API libraries are not intended to be used at the appli-
cation level. To take advantage of the specificity of network adapters hardware,
such as on-board processors, memory and DMA controllers, these libraries offer
just a few basic facilities to application programmers.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 1022−1031, 2003.
 Springer-Verlag Berlin Heidelberg 2003

GM [12] and MVIA [14] are two well-known low-level communication subsys-
tems to exploit Myrinet and Gibabit/Fast Ethernet, respectively. FM [15], BIP
[9], LFC [2] and MyVIA [5] also offer user-level interfaces to specific hardware.

1.2 High-Level Abstractions

If we want programmers to easily use libraries we need to improve, enrich and
extend the facilities offered by low-level communication libraries. High-level ab-
stractions and much richer interfaces are available from MPI [16], PM2 [13] and
PANDA [3], for example, but the use of these platforms forces programmers to
learn specific programming models.

These high-level programming environments, among others, may be used
to develop multithreaded applications, and inclusively support remote thread
creation. However, application threads are not first class programmer entities
involved in communication.

Traditionally the use of parallelism and high-performance computation has
been directed to the development of scientific and engineering applications. How-
ever, the increasing use of multithreading on commercial and internet applica-
tions has shifted the market to new areas, where conventional programming
models like MPI don’t fit programmers’ needs. In this context, the development
and use of multithreading programming techniques in high-performance SMP
cluster environments would benefit from the existence of a thread oriented com-
munication library and higher level programming models.

2 ToCL Approach

ToCL is an intermediate-layer communication library designed to exploit high-
performance networking hardware through available low-level communication
subsystems. ToCL introduces the notion of thread oriented communication li-
brary.

Presently it provides a unified interface for GM and VIA but the overall de-
sign easies the integration of other low-level communication subsystems. The
primary choice of GM and VIA [6] (mainly MVIA) is directly related with
the research we are pursuing to take advantage of Myrinet and Gigabit high-
performance technologies to build a scalable information retrieval environment.

2.1 Entities

ToCL uses three major entities to model applications executing in a cluster:
hosts, processes and threads. Global identifiers are assigned to hosts and pro-
cesses, to uniquely identify them within the context of a cluster. Threads may,
also, have a global identifier that is compatible with the existence of a local
identification in the context of a process.

ToCL entities have several attributes, as name, parent host (for processes),
parent process (for threads), etc, and applications may locate them by using

1023ToCL: A Thread Oriented Communication Library

attribute-based queries. A distributed directory service is used to register and
query entities present in the system. The current directory service prototype
is based on a NFS shared database but more sophisticated systems may be
considered, like [7] that uses LDAP fundamentals.

ToCL primitives offer remote spawning of processes and threads that regis-
ter themselves into the directory through specialized enroll primitives. Processe
registration is preceded by initialization of the existent low-level communication
subsystems.

The attributes of entities, most of the times, remain unchanged during the
overall application execution. To minimize the impact of the directory services,
ToCL uses process local caches. The use of local identifiers for threads also
contributes to minimize thread creation latency.

2.2 Communication

ToCL programs do not explicitly create communication end-points; processes
and thread identifiers are used as message origin and destination, following PVM
and TPVM approaches [8].

Threads in the same process share the communication facilities through port
multiplexing. This approach introduces latency overheads but it has the advan-
tage of not compromising scalability, given that the number of communicating
entities (threads) is not limited by low-level communication end-points.

ToCL is based on POSIX threads (actually Linux Threads); it does not imple-
ment thread facilities. Asynchronous events from low-level communication sub-
systems are managed by using a few threads of control. More complex strategies
to integrate communication management and thread scheduling are presented in
[10, 11]. However, these strategies depend on the developing of specialized thread
libraries, thus compromising applications portability and reutilization.

3 GM and VIA Basics

GM was developed by Myricom to take advantage of Myrinet hardware. VIA
standard defines an architecture for the interface between general high perfor-
mance network hardware and computer systems. MVIA is a well-known VIA
implementation that makes possible to experiment a few Gigabit and FastEth-
ernet network adapters.

Although distinct on the interface and protocols they use, both GM and VIA
are low-level approaches to high-performance message passing.

3.1 Zero-Copy Messaging

Both VIA and GM use regions of registered memory to achieve zero-copy mes-
saging. Registering a memory region comprises pining the associated memory
pages and informing networking hardware (or communication library middle-
ware) about buffer addresses. This means that applications must register data
buffers before calling send primitives.

1024 A. Alves et al.

Message reception only succeeds if the communication library was previously
notified to use pre-registered buffers. These buffers must be large enough to hold
the incoming data, otherwise the message will be discarded. A single buffer may
be used to store several incoming messages if applications explicitly inform the
library, after each message reception, to reuse that buffer. To manage variable
size messages, applications usually allocate huge buffers wasting memory.

3.2 Message Addressing

GM applications use ports to send/receive data. The number of ports is usually
limited to eight per network adapter, so we just have a few valid destinations
per host (assuming a network interface per host). Messages are addressed to
remote ports by means of a pair 〈node number, port number〉. Node numbers
correspond to network interfaces and are assigned by GM network mapping
tools while a port number is returned when the application opens a port using
a specific network interface.

VIA is a connection oriented communication protocol that uses pairs of VIs
(Virtual Interfaces) to connect remote entities (processes or threads). To send
messages to a particular destination, applications must create a VI and request
a connection to the remote destination using the VIA network address. Messages
are addressed to local VIs, however each local VI is related to one only remote
VI. In MVIA, VIs are limited to 1024 per network interface. A full-connected
multi-threaded application using h hosts and t threads per host would require
at least t2 × (h− 1) VIs per host.

3.3 Sending and Reception

VIA uses descriptors for send and receive operations. Descriptors are registered
memory regions containing information about the send/receive operations: buffer
addresses, data length and other control information. On reception descriptors
are processed according to a FIFO policy, thus making it hard to receive variable
size messages. For example, notifying VIA to prepare reception of two different
size messages requires knowledge about the order the messages will be sent.

GM library only needs to know the address and length of data. On reception,
when multiple buffers are available they are used according to message needs,
what makes it easy to deal with variable size messages.

Multithreaded applications may freely use VIA primitives – VIA is thread
safe – but for GM it is necessary to use mutexes to handle concurrency.

4 ToCL Operation

ToCL offers a unique interface for the development of multi-networked and mul-
tithreaded cluster applications. It uses the basic functionality from the low-level
communication libraries to not compromise the performance of the specific hard-
ware and communication protocols.

1025ToCL: A Thread Oriented Communication Library

GM/VIA

Application

TTCS

init bfget

provide reestablish polling (recv.)

out

bfret
in

bfstat

send

polling
(send.)

Fig. 1. Buffer management.

4.1 Buffer Management

ToCL manages a pool of pre-allocated registered buffers to ensure zero-copy com-
munication. Because memory registering is a time consuming operation, buffers
are created when ToCL initializes the underlying communication subsystems.

Applications must request buffers to store the data involved in a sending
operation. To prepare itself for receptions, ToCL notifies the underlying commu-
nication subsystems to use pre-allocated buffers.

Figure 1 presents the buffer management mechanism used in ToCL.

Application Driven Operation. Applications must request specific buffers
to store data before sending messages (fig.1:bfget). Because multiple low-level
network libraries may be available, applications must select the target network
(currently GM or VIA) when requesting buffers (by default the faster medium
is used). The send operation selects the network that matches the buffer type.

To find out if a specific message was successfully transmitted, the status of
the corresponding buffer must be checked (fig.1:bfstat). A specific buffer may
then be reused for sending as long as the pending operation is terminated.

The receive operation returns to the application a library buffer (fig.1:in)
that may also be reused to send data.

When a specific buffer (requested by the application or returned by a receive
operation) is not needed anymore, the application should explicitly return it
back to the ToCL library to be integrated in the buffer pool (fig.1:bfret). If
a send buffer is intended to be used just once, the application may notify the
library (before calling the send primitive) to automatically integrate it in the
buffer pool after the sending completion.

Library Driven Operation. The ToCL library notifies GM and VIA of the
availability of buffers for message reception (fig.1:provide).

1026 A. Alves et al.

When a message arrives (fig.1:polling (send.)), a buffer is used and the ToCL
library must provide the communication sub-layer with a fresh buffer. If the
buffer pool runs out of buffers, the ToCL library allocates and registers a new
buffer to prevent message loss.

To avoid message discarding, whenever a message arrives before ToCL is able
to provide a buffer, several buffers are provided in advance to the communication
sub-layers. ToCL also exploits idle time to automatically reestablish buffer pool
availability (fig.1:reestablish).

Buffer Sizes. For message sending the application requests appropriate size
buffers according to data length. The ToCL library just adds a small extra space
to the buffer to include message control data.

On message reception the library has to deal with variable length messages
and buffer sizes are difficult to estimate.

A first possibility is to use buffers large enough to hold any possible message.
This option requires large amounts of memory, unless data is copied from buffers
to application memory and the same buffers are used to receive all messages.

ToCL choice is to define a maximum buffer size and to use buffers of 2n bytes,
to ensure that only a few different buffer sizes are handled. This way, for mes-
sage reception, the library will provide the low-level communication subsystems,
particularly VIA and GM, with at least one buffer for each allowed buffer size.

As an example, for a particular x bytes buffer request, a 2y bytes buffer will
be returned according to the formula 2y−1 ≤ (x + msg.control) ≤ 2y.

4.2 Message Dispatching

To ensure fair access to the multiple network facilities needed by application
threads, ToCL uses a message dispatching mechanism that multiplexes the low-
level communication subsystems.

Send and Receive Queues. Send and receive primitives executed by applica-
tions interact with the ToCL library through queues.

Messages are dequeued from the send queue and submitted to the low-level
communication subsystems according to the buffer type. A FIFO queue is used
for message sending, but other scheduling policies may be used to support pri-
ority messages.

ToCL uses a polling mechanism to monitor the low-level communication sub-
systems to detect the arriving of messages. New messages are enqueued into the
receive queue and are indexed by source and tag. At application level the message
interface may use the source and the tag of a message as a selection mechanism.

Low-level Transmission. ToCL communication model assumes that a thread
can send a message to any other thread in a multithreaded multi-networked
cluster environment, thus supporting thread oriented fine-grained communica-
tion and computation at application level. However, to deal with the expected

1027ToCL: A Thread Oriented Communication Library

VIA

TTCS
dequeue

CreateVi

find entry

ConnectRequest

PostRecv

CreateVi

PostRecvfind entry

ConnectWait

ConnectAccept

VI pool

VI

Buffer pool

PId, Size

free entry

VI pool

free entry

VI

PId, Size Buffer pool

Fig. 2. Connection management for VIA.

large number of threads that applications may use, it creates one only low-level
communication end-point for each process and low-level communication subsys-
tem.

For each message dequeued from the receive queue it is then necessary to
find the matching low-level subsystem end-point.

GM: Each process opens a port and announces its node and port identifiers by
using a directory service. The directory service maps process global identifiers
into GM ports. Local caches are used to minimize overhead.

GM is a connection-less protocol that allows any process to directly send a
message to a target GM end-point. Messages to several destinations may be sent
using the same port and messages from several origins may be received using
one only port.

VIA: Each process announces itself using its network address and waits for
connection requests. A network address is formed by the MAC address and a
discriminator3. ToCL uses the global process identifier, provided by the directory
service, as discriminator. The VIA network address allows the ToCL library to
establish a connection to the right end-point and send the data (see below).

VIA Connections Details. Because connection establishment is a heavy op-
eration it is mandatory to maintain persistent connections if we want to lower
latency. The basic idea is to create a VI (virtual interface) and establish a con-
nection to a specific remote process only once: the first time a message is sent
to that process.

When using one only connection per remote process we have to deal with
the following problem: how to receive variable size messages? In fact, notifying
VIA to use a set of different size buffers for a particular VI is useless (see 3.3).
To overcome this difficulty, ToCL uses a set of connections per remote process -
one for each possible buffer size.

For each message to be sent, after dequeuing it from the send queue, the
destination process identifier and the message size are used to find the matching

3 Discriminators are similar to UDP or TCP ports but they may be any byte sequence.

1028 A. Alves et al.

connection (a VI entry) to the target process in the VI pool (fig.2[left]: find
entry). In the absence of a connection to the target process, a new VI is created
(fig.2[left]: CreateVi) and a connection request is issued to the remote process.

A connection request is addressed to the VIA network address registered in
the directory service by the remote process. Apart from the request, the library
also notifies VIA of the availability of buffers for future incoming messages, i.e.
messages that will arrive after the connection is established.

For each process, ToCL uses a single thread to handle connection requests.
Every time a request is detected (fig.2[right]: ConnectWait), a VI is created and
stored in the VI pool. Note that connections are bi-directional, so that a VI may
be used to send messages to the process that issued the connection request.

After notifying VIA of available buffers for message reception, ToCL also
informs the requesting process that the connection was accepted (fig.2[right]:
ConnectAccept).

Send and Receive. VIA uses descriptors to describe send and receive opera-
tions. Because both operations involve a buffer, ToCL creates a descriptor for
each buffer and uses it as a buffer attribute.

After dequeuing a message, if the buffer type matches the VIA communica-
tion subsystem, ToCL uses the buffer descriptor to call the VipPostSend prim-
itive. For GM, only the buffer address and the data length are needed to call
the gm send primitive. To handle sending success acknowledgments and set ap-
propriately the buffer status flag, ToCL uses the GM callback mechanism or the
VIA completion queue notifications.

To receive messages, ToCL polls periodically both communication systems;
if a GM receive event is detected or if a descriptor is returned by the VIA
completion queue then an enqueue operation is started.

4.3 Multi-Protocol Messages

ToCL has been designed to take advantage from the existence of multiple net-
work adapters in cluster nodes. By using ToCL, applications may transparently
exploit multiple low-level communication subsystems increasing communication
bandwidth. These features are supported by a mechanism of message fragmen-
tation that allows message fragments to travel independently through different
communication media, reaching a destination end-point where they are reassem-
bled in a solely message.

Fragment Dispatching. ToCL library distinguishes between two types of mes-
sages: short messages and long messages.

Short messages correspond to data stored in registered buffers and are trans-
mitted at once using a single communication subsystem. The maximum size of
short messages defaults to ≈32kbytes (VIA) and ≈64kbytes (GM).

Long messages are transmitted from regular user memory and require data
copying.

1029ToCL: A Thread Oriented Communication Library

GM buffers
pool

GM VIA

TTCS

out

copy

gm_send copy

_bfget

_bfget

VIA buffers
pool

copy

copy _bfget

_bfget

PostSend

PostSend

Application
malloc

copy

gm_sendgm_send

polling (send)

Fig. 3. Fragment dispatching.

After dequeuing a long message (whose buffer type is regular memory) the
library first selects a communication subsystem, then searches for a free buffer
in the buffer pool (fig.3: bfget) and finally copies a message fragment to that
buffer. Fragments are alternately sent using the available subsystems.

During fragment transmission, sending success acknowledgments may arrive
(fig.3: polling send) and buffers used to send initial fragments may be reused to
send other message fragments.

To make reassembling possible at destination, all fragments are tagged with
the same message identifier along with fragment offsets and the originator process
identifier.

5 Discussion

ToCL is an undergoing research being developed as a component of a major
project aimed to design and to implement SIRe (a scalable information retrieval
environment). SIRe basically will build a cluster architecture based on networked
commodity workstations and high-performance networks to provide a large num-
ber of users with concurrent and efficient access to multiple text documents
spread on cluster nodes.

Economics constraints and performance requirements lead us to develop
ToCL as an intermediate-layer communication library, able to support a par-
allel and distributed multi-threading programming environment that can either
scale up to provide higher performance or scale down to allow affordability or
better cost effectiveness.

ToCL includes important features present in some of the most relevant com-
munication libraries like Madeleine [4], an intermediate-level communication li-
brary used by PM2 that supports multiple communication sub-systems, and
PANDA which includes a specific layer to manage hardware heterogeneity. How-
ever, ToCL is unique in the use of existing POSIX threads libraries to built a
fine-grained communication library where threads play the principal role.

1030 A. Alves et al.

A preliminary version of ToCL that exclusively supported GM, along with
an application example and performance measurements, was presented in [1].
Performance tests were conduced using a small cluster environment consisting of
four dual Pentium III (733MHz) machines, interconnected by Myrinet technology
(LANai 9, 64bits/66MHz interfaces) .

More recently, a new communication library was devised, in order to support
multiple communication subsystems. Presently a new suite of tests is being con-
duced to evaluate the overall design and performance. We plan to evaluate ToCL
VIA support over Gigabit, and compare its performance to GM, by using another
small cluster, consisting of four dual Athlon (1.8GHz) machines interconnected
by Gigabit technology (SysKonnect SK-9821 interfaces).

References

1. A. Alves, A. Pina, J. Exposto, and J. Rufino. Scalable Multithreading in a Low
Latency Myrinet Cluster. In VECPAR’02, 2002.

2. R. Bhoedjang, T. Rühl, and H. E. Bal. LFC: A Communication Substrate for
Myrinet. In 4th Conf. of the Advanced School for Computing and Imaging, 1998.

3. R. Bhoedjang, T. Rühl, R. Hofman, K. Langendoen, and H. Bal. Panda: A Portable
Platform to Support Parallel Programming Languages. In SEDMS IV, 1993.

4. L. Bougé, J. Méhaut, and R. Namyst. Madeleine: Efficient and Portable Commu-
nication Interface for RPC-based Multithread Environments. In PACT’98, 1998.

5. Y. Chen, X. Wang, Z. Jiao, J. Xie, Z. Du, and S. Li. MyVIA: A Design and
Implementation of the High Performance Virtual Interface Architecture. In IEEE
Int. Conference on Cluster Computing, 2002.

6. Compaq Computer Corp., Intel Corporationnand & Microsoft Corporation. Virtual
Interface Architecture Specification, 1997.

7. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A Directory Service for Configuring High-Performance Distributed Computations.
In 6th Int. Symposium on High Performance Distributed Computing, 1997.

8. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Par-
allel Computing. Scientific and Engineering Computation. MIT Pres, 1994.

9. P. Geoffray, L. Prylli, and B. Tourancheau. BIP-SMP: High Performance Message
Passing over a Cluster of Commodity SMPs. In SC’99, 1999.

10. Hansen, J. & Jul, E. Latency Reduction using a Polling Scheduler. In Second
Workshop on Cluster-Based Computing, pages 27–31. ACM, 2000.

11. Langendoen, K., Romein, J., Bhoedjang, R. & Bal, H. Integrating Polling, In-
terrupts, and Thread Management. In 6th Symp. on the Frontiers of Massively
Parallel Computing, 1996.

12. Myricom. The GM Message Passing System, 2000.
13. R. Namyst and J. Méhaut. PM2: Parallel Multithreaded Machine. A computing

environment for distributed architectures. In ParCo’95, 1995.
14. National Energy Research Scientific Comp. Center. M-VIA: A High Performance

Modular VIA for Linux. http://www.nersc.gov/research/FTG/via/index, 2002.
15. S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Workstations:

Illinois Fast Messages (FM) for Myrinet. In Supercomputing 95, 1995.
16. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The

Complete Reference. Scientific and Engineering Computation. MIT Pres, 1998.

1031ToCL: A Thread Oriented Communication Library

	Introduction
	Low-Level Communication Libraries
	High-Level Abstractions

	ToCL Approach
	Entities
	Communication

	GM and VIA Basics
	Zero-Copy Messaging
	Message Addressing
	Sending and Reception

	ToCL Operation
	Buffer Management
	Message Dispatching
	Multi-Protocol Messages

	Discussion
	References

