
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 1052–1058, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Mobile Work Environment for Grid Users. Grid
Applications’ Framework

Michal Kosiedowski 1, Miroslaw Kupczyk 1, Rafal Lichwala 1, Norbert Meyer 1,
Bartek Palak 1, Marcin Plóciennik 1, Pawel Wolniewicz 1, and Stefano Beco 2

1 Poznan Supercomputing and Networking Center,
ul. Z. Noskowskiego 12/14, Poznan, Poland

{miron, syriusz, meyer, palak, marcinp, pawelw}@man.poznan.pl
2 DATAMAT S.p.A.,

Via Laurentina, 760 - I-00143 Rome, Italy
stefano.beco@datamat.it

Abstract. In this article we aim to describe a project developing of the Migrat-
ing Desktop infrastructure for mobile users. This functionality refers to the work
environment of the users who very often change their location. The user inter-
face called the Migrating Desktop, or grid desktop, is a very useful environment
that accomplishes an integrated set of services and real applications, which
could be run on the grid. We introduce a framework for improving the grid ap-
plication launching. The possibility of usage of interactive application in devel-
oped environment is presented.

1 Introduction

What is needed for tomorrow is the proper remote and individual access to the re-
sources, independently of the original location of the user. In the CrossGrid project
(IST-2001-32243) [1] we introduce the Migrating Desktop [7]. It creates a transparent
user work environment, independently of the system version and hardware. The Mi-
grating Desktop would allow the user to access grid resources and his/her local re-
sources from remote computers, like i.e. laptops. It will allow to run applications,
manage data files, store personal settings (configuration definitions that characterise
e.g. links to the user data files, links to applications, access to application portals
and/or specialised infrastructure, as well as windows settings), independently of the
localisation or the terminal type. In the paper we present our idea and the way of de-
veloping mechanisms for easier adjustment of the application which remains to be run
on the grid. The Container and the Application Plugin paradigm will be discussed later
on. We present the types of interactivity over the grid and the mechanisms for bridling
it in our environment.

As an underlying layer we develop the middleware called the Roaming Access.
This infrastructure is a set of modules and their interconnections hidden ‘behind’ the
user interface. The Roaming Access and the Migrating Desktop features will not sup-
port the „moving users“. It means that no special mechanisms to access the grid re

Mobile Work Environment for Grid Users. Grid Applications’ Framework 1053

sources via mobile phones, PDAs (such as palmtops, organisers, etc.) will be consid-
ered within the confines of the given project. As a bottom line of the middleware we
use the Globus toolkit [3]. These facilities give us important functionality like secu-
rity policy, simple remote operations, user account mapping, etc. Some elements used
in this work come from the DataGrid project [2] like the idea of the grid interactive
job submission, the Virtual Organisation (VO) paradigm. The architecture of the proj-
ect was fully detailed in the project documentation [5] and in the paper [6]. The com-
ponents of the Roaming Access were presented in [7].

2 Application Framework

The Application Plugin and the Application Container are a general view of showing
application specific input and output. These allow preparing the portal framework,
which is independent of application type, so that we could easily extend it and prepare
for next applications. It supports the batch and interactive application as well. It is
worth mentioning that this framework will soon be integrated with the GVK (Grid
Visualization Kernel) [10]. We would like to emphasize that the communication
methods between the distributed nodes involved in the computations are not the point
here. It could be MPI jobs and the HLA based as well [9].

Fig. 1. The example of the Application Wizard – submission of the Assembly Application.

The Migrating Desktop provides a wizard that the user can use to specify the job de-
tails. This wizard (see Fig. 1.) simplifies the process of specifying parameters and
limits, suggesting user default or last used parameters. That wizard consists of several

1054 M. Kosiedowski et al.

panels. Two panels are reserved for the application specific plugin – the Arguments
Panel and the Job Output Panel. Developers of the specific application should imple-
ment the contents of these panels in term of the Application Plugin.

The Application Container is a framework for the Application Plugin. It is an ab-
stract class that is extended by the Application Plugin and extends the graphical com-
ponent (JPanel) [8], which can be placed into different dialogs, panels etc. The Appli-
cation Container can be characterised in the following way:

A generic abstract class that the Application Plugin will extend.

It is application independent.

It gives the Application Container API that can be accessed from the Plugin. They
are represented by a set of methods.

It controls the Application Plugin by restarting, stopping it, catching error mes-
sages and invoking appropriate actions.

It can set or get parameters within the Application Plugin.

The Application Plugin is the content of the Application Container. It extends the
Application Container class and implements a set of its abstract methods. It should
provide and implement two panels of the Job Submission Wizard: the input argu-
ments and the output specification. It should be able to visualise the output of appli-
cation. The Application Plugin can be characterised in the following way:

It will have a reference to Application Container API, so that, if necessary, it could
invoke a function from the Application Container.

The Application Container and Plugin can be placed on the separated servers.

It should implement functions that allow the control (by the Application Container)
of:

- Setting arguments,

- Getting arguments,

- Getting default job name.

The Application Plugin can be a java JApplet class if its author considers it reason-
able . However, the supported plugin should define all necessary functions (should
extend the Application Container class).

Generally, there will be two kinds of the Application Plugins: batch and interactive
work application plugin. The application specific parameters are set in the Arguments
panel (see Fig. 1.). Pre-verification of the parameters and the graphical parameters
setting (eg. operations on land maps that points are input for application) will be pre-
sented on this panel, too. Graphical visualisation of results will be presented on the
Job Ouput panel, if necessary. The Interactive Job Plugin is a more complicated kind
but it will contain all batch work plugin functionality. It shows the interactive stream
of the job output. The interactivity is described later on.

Mobile Work Environment for Grid Users. Grid Applications’ Framework 1055

3 Interactive Applications

A Grid Batch Job (GBJ) can currently be submitted using standard queuing software:
the user submits the job providing a description by a Job Description Language file
and waits for the end of the job asking for its status.

When the job is completed, the user will be able to request for output results
downloading in his local machine.

When the user submits a Grid Interactive Job (GIJ), he/she needs the allocation of
grid resources throughout his/her “interactive session”. During the whole session a bi-
directional channel is opened between the user client and the application programme
on a remote machine. The entire job input and output streams are exchanged with the
user client via this channel: the user sends input data to the job and receives output
results and error messages. Details on the mechanism we foresee to manage GIJ’s are
in the following sections.

There is an additional group of applications, and they consist of zillions of chunk
jobs persisting several minutes. Usually, the user – the decisive element - chooses the
right way of running a job. Generally speaking, we can call such job an Application
Interactive Job (AIJ). In this case, the Web Server automatically submits a GIJ that
can be seen just as a container or, in other words, as a “shell” that will run on allo-
cated grid resources. It opens a direct bi-directional connection between the Portal
Server and allocated resources. The user chooses the AIJ that will run on allocated
computing element(s), and the input data for the chosen application job.

In other words, we can say that:
the GIJ is the container. It is a piece of software that acts as a shell/inter-

preter/executor of an AIJ. It is a domain-dependant application. It sits on the needed
resources (defined in accordance with the AIJ needs). It shall have a function capable
to interact via standard streams with the Web Server. It will be submitted using a JDL
via the Scheduling Agent.

the AIJ is the content. It is the real application that the user wants to be executed
over the Grid. It is a domain-dependant application. It will be interpreted/executed by
the GIJ. It will be submitted using whatever language is suitable for the application
(e.g. C++ scripts) directly to the GIJ.

To give an example, the Web Server performs the GIJ submission after the user
chooses a DATASET for his/her purposes within a list of DATASETS available for
his/her Application Virtual Organisation. The submitted GIJ contains the process
called the “Interactive Session Manager” (ISM) that handles the interactive session
from the point of view of the application. ISM will run as close as possible to the
Storage Elements hosting a physical copy of the selected DATASET.

Then the user “submits” one or more application scripts (the AIJ’s). The user can
choose the Application jobs among an available list of predefined applications or
he/she can define one for his/her specific needs in an editor window.

A very important feature in interactive environments is the ability to recover from
unexpected failures of e.g. workstation. There is no problem in case of batch jobs, but
interactive applications need to be equipped with extra functionality. It would be bet-
ter not to rewrite the existing application codes. However, it should be considerable to
build the additional linkable library for the grid interactive session management.
There is no such possibility in the existing load facilities (queuing systems, etc...).

1056 M. Kosiedowski et al.

Fig. 2. How the interactive session works.

We present the solution that will be implemented for EU-CrossGrid (see Fig. 2.).
The interactive sessions [4] are handled by the Grid Console (GC) that is a system

provided by Condor for getting mostly-continuous input/output from remote pro-
grams running on an unreliable network. A GC is a split execution system composed
by two software components: an agent (Console Agent – CA) and a shadow (Console
Shadow – CS or Job Shadow – JS, as it will be a slightly modified CS).
The split execution system is a special case of an interposition agent. An interposition
agent transforms a program's operation by placing itself between the program and the
operating system. When the program attempts certain system calls, the agent grabs
control and manipulates the results.

In the split execution system an interposition agent (CA) traps some of the proce-
dure calls of an application, and forwards them (via RPC) to a shadow process (CS)
on another machine. Under this arrangement a program can run on any networked
machine and yet execute exactly as if it were running on the same machine as the
shadow. All the network communications are GSI-enabled.

The Console Agent runs on a Worker Node and it is a shared library that intercepts
reading and writing operations on stdin, stdout, and stderr of the running job. When
possible, the CA sends the output back to the CS. The shadow manages the input and
output files according to the request of the agent.

If the output sending fails, CA will write it on the local disk instead. It does not
matter why the input/output operation failed; the CA will keep the process running.
At regular intervals it will attempt the network connection again. If the connection
succeeds, it will transfer any buffered data to the shadow, and then resume normal
operation.

Mobile Work Environment for Grid Users. Grid Applications’ Framework 1057

The CA retries failed operations at regular intervals for a certain number of times,
after which it will give up and kill the process. The number of times to retry and the
number of seconds to pass between each retry are configurable.

The user submits his/her interactive job via the Portal Server (PS) and interacts
with the remote machine where the job is running (Worker Node- WN). The Portal
Server starts/stops the Job Shadow on the Submission Machine when the user
opens/closes the interactive session. The PS writes in the Logging&Bookeeping (LB)
and in the JDL file the ShadowPort (port number assigned to the shadow) and the
ShadowHost (the host where the Job Shadow runs); this information is also used by
the agent. In the JDL there will be an attribute called JobType set to “Interactive”.

Before the submitted job goes in the running status, a script called JobWrapper
prepares the environment for the job, transfers on the WN additional files within the
job InputSandbox and starts the Cushion Process.

The Cushion Process is a process linked to the CA that handles the standard
streams between the CA and the running job by using a named pipe. This process is
needed to avoid dynamic linking between the user job process and the CA library. It
also allows to avoid linking between a system library and a user process, as well as a
possible failure that could appear if the user job works with other interposition
agents (besides the CA).

For the standard X-Windows applications, the VNC [11] protocol will be used. It is
foreseen to be integrated next year. The corresponding connections are shown in
Fig. 2.

4 Summary

The Roaming Access and Migrating Desktop implement new generation tools for the
end user according to the growing demands and needs. Nowadays it is not enough to
have Internet or Grid access. It can be observed that the group of inexperienced users
has increased significantly. On the other hand, the Grid and Internet populations are
among the most mobile of all (moving between Virtual Organizations in an open net-
work environment). Therefore, the Grid should be able to deliver a service allowing to
keep and restore the users’ working environment. The Job Wizard functionality is the
response for easy and flexible work with the grid application, including interactivity.
The mentioned functionality is a cutting edge in the grid utility. This is a goal that we
approach by the delivery of the tool for the application programmers, and a uniform
environment for the end-users.

The Desktop Portal Server extends the functionality of the Application Portal
Server by providing a specialised advanced graphical user interface and a mechanism
that allows the user to access all files stored on his/her personal machine available
from other locations/machines. The mentioned functionality is developed within the
CrossGrid project (IST-2001-32243, http://www.eu-crossgrid.org) and its first Proto-
type was released in February 2003.

1058 M. Kosiedowski et al.

References

1. Annex 1 to the “Development of Grid Environment for Interactive Applications” - EU-
CrossGrid Project, IST-2001-32243,
http://www.eu-crossgrid.org/CrossGridAnnex1_v31.pdf

2. Annex to the “Research and Technological Development for an International Data Grid” -
EU-DataGrid Project, IST-2000-25182, http://eu-datagrid.web.cern.ch/eu-datagrid/1Y-
EU-Review-Material/CD-1Y-EU-Review/3-DataGrid-
TechnicalAnnex/DataGridAnnex1V5.3.pdf

3. Globus Toolkit 2.0, http://www.globus.org
4. Kupczyk, M., Lichwala, R., Meyer, N., et. al., Roaming Access and Portals: Software

Requirements Specification”, EU-CrossGrid Project,
http://www.eu-crossgrid.org/Deliverables/M3pdf/SRS_TASK_3-1.pdf

5. Bubak, M., Malawski, M., Zajac, K., “Towards the CrossGrid Architecture”, Proceedings
9th European PVM/MPI Users’ Group Meeting, Linz, Austria, September/October 2002,
LNCS 2474.

6. Bubak, M., Malawski, M., Zajac, K., “Current Status of the CrossGrid Architecture”, Pro-
ceedings of the Cracow ’02 Grid Workshop, December 11–14, 2002, Cracow, Poland

7. Kupczyk, M., Lichwala R., Meyer, N., Palak, B., Plociennik, M., Wolniewicz, P.,
“Roaming Access and Migrating Desktop”, Proceedings of the Cracow ’02 Grid Work-
shop, December 11–14, 2002, Cracow, Poland

8. Java Library, http://sun.java.com
9. High Level Architecture Run-Time Infrastructure RTI 1.3-Next Generation Programmer’s

Guide, https://www.dmso.mil/public/transition/hla/
10. Heinzlreiter, P., Kranzmueller, D., Volkert, J., “GVK – Visualization Services for the

Grid”, Proceedings Cracow ’02 Grid Workshop, December 11–14, 2002, Cracow, Poland
11. Virtual Network Computing, http://www.uk.research.att.com/vnc/, University of Cam-

bridge.

http://www.globus.org/

	1 Introduction
	2 Application Framework
	3 Interactive Applications
	4 Summary
	References

