
Computational and Soft Skills Development
through the Project Based Learning

Innokenti Semoushin, Julia Tsyganova, and Vladimir Ugarov

Ulyanovsk State University, 42 L. Tolstoy Str., 432970 Ulyanovsk, Russia
{SemoushinIV, TsyganovaJuV, UgarovVV}@ulsu.ru

http://staff.ulsu.ru/semoushin/

Abstract. In this paper we discuss some experiences gained by Depart-
ment of Mathematical Cybernetics and Informatics, Ulyanovsk State
University, Russia, on teaching computer science and mathematics
courses for students majoring in Computational Science and Engineering
(CSE).

1 Introduction

The demands for experts in Computational Science and Engineering (CSE) call
into being different educational approaches such as new didactic environments
[1], [2], new academic programs [3], [4], and new learning methods supported
by technology [5]. Nevertheless, a building block to educate CSE professionals
remains as before: highly developed skills of algorithmic thinking and computer
programming. A promising development in university education involves the
application of project-based learning as a curricular vehicle to develop students’
computational talent. We define the Project-Based Learning (PBL) as a teaching
paradigm stating that the student has perfectly understood a computational
method not until he or she becomes able to make the computer to do all the
work prescribed by the method. We express this by a piece of advice we give
in jest to some of our students: “If you argue that you know the method well,
please teach the computer to do the same”.

2 Employers’ Expectations

Training experts in CSE as well as in “Applied Mathematics” (AM), “Infor-
mation Systems” (IS), “Information Technology” (IT) and some related fields
assumes the profound study of computer programming. It is well known that
contemporary employers expect not simply programmers but professionals hav-
ing depth in one specific area of programming as well as breadth in computer
science in general and in other fields relevant to information technologies, such
as:

– Database Design and Management
– Data Communication (Computer) Networks

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 1098–1106, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Computational and Soft Skills Development 1099

– System Programming (system management and control software in a variety
of hardware and user environments)

– Application Programming (development of the problem-oriented applied
programs)

– System analysis (finding the effective solution to the task and program spec-
ification development, on the basis of customer requirements)

– Etc.

Knowledge in these areas is requisite to carry out the main task – mainte-
nance and development of information systems in industry and academic setting.
One of the principal disciplines necessary to prepare experts for careers in CSE
and IT is Programming. The purpose of this discipline is not only to develop in
students the strong theoretical background but to teach the solid practical skills
in computer programming. The students majoring in CSE must gain actual ex-
perience in solving problems through writing, entering, and running programs in
order to develop their ability of structural algorithmic thinking. They also need
to consider versatility of the discipline of Programming and its deep relation to
many topics of mathematics: algebra, geometry, calculus, etc.

3 Traditional Approaches to Teaching Programming

Over the years many different techniques for teaching Programming and other
related courses have been devised. Leading scientists, such as N. Wirth, E. W.
Dijkstra, W. M. Turski and others paid much attention to the problem (see for
example, [6], [7], [8], etc.).

Up to now, many educational courses in computer science are based on the
methodological principles of teaching programming developed by Dr Niklaus
Wirth, the famous Swiss scientist. Algorithmic language Pascal created by him,
has been world wide practised, especially as the training programming language
[6]. E. W. Dijkstra [7] has offered a method of formal program derivation from
mathematical formulation of a problem, and some new approaches to decom-
position of algorithms. Now Programming is the base of study at mathematical
and engineering faculties of universities. The great experience has been accumu-
lated, the various approaches to and methods of teaching this course differing on
a goal orientation have been considered and approved. For example, the method
suggested by Kaimin [9], is aimed at the developed student logic thinking and
general computer literacy, allowing a student to work with ready-made applied
software packages. The primary preparation method used at the Mechanics and
Mathematics Faculty of Moscow State University (Russia) is aimed at establish-
ing the base of general programming culture of the students [10]. This method
is built upon developing the mini-projects to consider and make use of the basic
propositions of programming. The issues of computational mathematics, nu-
merical methods and other subjects of mathematics are not considered in this
course. The material is based on concept of the “Executor”, which can carry
out “Actions” or “Instructions” over “Objects” to change their “States”. The



1100 I. Semoushin, J. Tsyganova, and V. Ugarov

set of “Actions” refers to as “System instructions” of “Executor”. This method
gives the basic attention to consideration of algorithms, not especially becoming
attached to the certain programming language.

4 Programming as a Sort of Engineering Design

4.1 Aiming at the Main Professional Qualities

Along with the other above mentioned methods, we consider the course “Pro-
gramming” as a sort of engineering design. By definition of John R. Dixon [11]:
the engineering design in essence is not the “art”, but it represents activity which
one can investigate and analyze, and master its bases during training... [11]. An
expert in programming should correctly solve a lot of problem characteristic for
design process while developing a software package. As a rule, the aim consists
in the development of the software product able to carry out the job subject to a
number of restrictions imposed on the product features. It is known that design
is essentially iterative process consisting of successive stages on the way to the
desired product some of which are to be repeated in order to improve or update
the project or to correct the errors. The earlier corrections are made, the less
amount of work and expenses will be spent for the whole project. On each design
stage there exists a problem of a choice between many variants of the further
work. This assumes decision making to satisfy one or other given criterion. In
the designing process, it is very important to understand correctly the diverse
requirements imposed on the future product. Consequently, along with the good
knowledge of programming process, it is necessary to know well the subject area
for which the project is developed. From the above brief reasoning about the de-
sign process it is clear that the modern programmer must be possessed of many
qualities:

– High qualification in programming.
– Ability in doing analysis of a product on various design stages for revealing

the elements having influence on the quality.
– The sufficient knowledge of the subject area for which the project is devel-

oped.
– Strong Computational Mathematics knowledge in designing solutions to

mathematical and computer oriented problems.
– Thinking skills in making decisions under conditions of uncertainty in view

of all essential factors [5].

The development of such qualities in prospective computer professionals is
the basic task of the university courses “Computer Science” and “Programming”.

4.2 The Basic Phase of Learning

As these courses are read at the first year of study and are basic, from the
classical point of view it is necessary to keep elements of directive training.



Computational and Soft Skills Development 1101

Because programming is the practical discipline having, on the one hand, the
strict language constraints and on the other hand, the wide variety of ways to
implement the algorithm, the success on the initial stage of learning is possible
only with the large amount of practical work. At this stage, it is important to gain
the experience in simple algorithm implementation and acquire the working skills
in one or other tool environment. In the same period, there must be introduced
the common programming standards and elements of programming technology
and program design techniques. The special attention should be given to the
concept of the top-to-down program design and the algorithm decomposition
methodology. As was shown by N. Wirth [6], there is some optimum set of
algorithms whose realization allows to cover a necessary minimum of knowledge
and skills of the initial level in the educational purposes while learning the chosen
programming language. The set looks as follows:

– Base data structures and algorithms determined on them.
– Complex data structures: sequences, arrays, records, files.
– Search and sort algorithms on the given data structure.
– Recursive algorithms implementation.
– Dynamic data structures: lists, stacks, turns, trees.
– Program decomposition methods: procedures, functions, modules, objects.
– Algorithms on graphs.
– Interface realization.

The consecutive study of algorithms and their realization in particular lan-
guage following the principle of increasing complexity of both data structures
and algorithms determined on the given structures, allows to solve rather suc-
cessfully the problem of training in students the basic programming concepts
and skills.

4.3 Choosing the Subject Area for Algorithm Implementation

While developing assignments (or tasks) for practical algorithm implementation,
a problem arises: what subject area is worthy to be chosen as a base for the
assignment generation? Usually for that, the examples from various subjects are
used: algebra, geometry, physics, chemistry, biology, mechanics, etc. The main
requirement to the assignments is that the subject area should be familiar to the
students. A variety of task themes has the advantage that it promotes expansion
of student’s mental outlook in application of algorithmization methods. However,
it requires good correspondence between the students’ training background and
thematic orientation of the tasks.

Therefore the following programming training method is of interest: some
subject area is chosen, its levels on increasing concepts complexity are defined,
and the given subject area is offered as a basis for the tasks of programming
course with a high degree of correlation on subjects and level of complexity of
both the data structures, and algorithms. If the study of the chosen subject area
will overtake a little the study of the corresponding programming sections, the



1102 I. Semoushin, J. Tsyganova, and V. Ugarov

parallel study method of the two disciplines will allow to raise a degree of mas-
tering both programming and chosen subject area. As an example of a subject
area it is possible to consider the course of “Numerical methods”. A.P. Yershov
[12] pointed out the strong, fundamental connection of the computer science and
mathematics concepts:

Mathematics Computer science

Algebraic system (structure) Executor (robot, computer)

Carrier Conditions

Element of the carrier State of the conditions

Operation Action changing conditions

Predicate Question to the conditions

Signature Instruction set

The protocol. A sequence of
operations and predicates with
their values + initial element

Behavior. A sequence of actions and
questions to conditions with their an-
swers, from the initial state

Predicate-precondition Task condition

Predicate-postcondition Task purpose

The available protocol realiz-
ing the appropriate predicates of
pre- and post- conditions on the
ends

The task solution. Behavior leading
from the state satisfying the task con-
dition to the state satisfying the task
purpose

The program. Sub-recursive set
including a set of feasible proto-
cols

The code. The final instructions deter-
mining the behavior that leads to the
end of each state satisfying the task
condition

4.4 Our Suggestion: Mutually Supplementary Course Teaching

Mutual use of different disciplines methods was applied by several authors, for
example [13], [14], [15]. While considering the Computational Mathematics or
Graph Theory topics, the authors used elements of programming as an illustra-
tion of how to realize one or other method. However a crisp interrelation of the
given courses was not determined. Our suggestion is that the methods of two
courses should be thus interconnected that they supplement and support each
other.

Let, for instance, the theme “Complex data structures: arrays” be studied
in the course of “Programming” and the theme “Matrix algebra” of “Numerical
methods” course have been considering. Then in the study of “Arrays”, students
may be given the tasks related to matrix operations: transposition, addition,
multiplication, determinant calculation, and so forth. Realizing the tasks in the



Computational and Soft Skills Development 1103

form of computer program, students will better mastering the “Matrix algebra”.
After that, it would be possible to pass to the next theme of study in “Numerical
methods”, for example, “Solving linear systems of equations”. This theme gives
the basis to form many assignments for the theme “Dynamic data structures” in
“Programming”. In the same manner, links between the other studied sections
and courses can be introduced into the teaching and learning process.

5 Project-Based Learning

Most of the existing educational materials on Computational Mathematics pro-
vide main theoretical data and sometimes theoretical instructions on how to
program a numerical method or algorithm. However, it seems to be inadequate
to the end. We believe that the true understanding of a numerical method may
be achieved if: (a) a student completes assignments related to a challenging pro-
gramming project; (b) each project results in practical use of that particular
method assigned for the student; (c) the student conducts a set of extensive
computational experiments with the program he developed independently; and
finally (d) frontal rating of the projects is carried out by the teacher together
with the students.

Programming in itself is beneficial for student due to a number of reasons.
First, it provides an opportunity to understand and learn a numerical method
“from inside”. This is quite different from utilizing ready-made software and
significant for any creative professional. Second, it improves student’s computer
proficiency, as it requires keen programming. And finally, it develops general
analytic and solution seeking performance and implants practical skill to attack
and solve computationally oriented problems.

To organize Project-Based Learning while teaching numerical methods to a
large audience requires to make programming assignments as varied as possi-
ble in terms of the methods’ algorithmic significance rather than their initial
data. However, the number of variations on every method is usually limited. In
these conditions, finding as many as possible versions of every numerical method
becomes a matter of great methodological importance for each teacher.

Organizing PBL means, also, that we should evaluate any laboratory pro-
gramming project as a single study objective which possesses all the features
of a completed software product. Among them are modular structure, conve-
nient interface, efficient utilizing computer resources (memory and time), and
possibility to implement a wide plan of computational experiments. This dif-
fers definitely from a widely used technique when the students work on one and
the same ready-made software when they only enter their initial data and wait
passively for a result. The approach we apply makes them perform valuable cre-
ative operations, stimulates each student’s competitiveness, prevents cheating
and helps to improve overall class performance.

A classic example of how to find as many as possible variant forms of a nu-
merical method is the topic “Elimination and Matrix Inversion Methods”. First
of all, the teacher should systemize a set of Gauss and Gauss-Jordan elimination



1104 I. Semoushin, J. Tsyganova, and V. Ugarov

specific characteristics. They are: (1) direction of elimination of unknowns, (2)
mode of access to the matrix entries, (3) mode of updating the active sub-matrix,
(4) pivoting strategy etc. Then independence of these characteristics will result
in a significant number of different variants of assignments on the same topic
being studied.

Over the course on many years, our work is focused on the possible ways of
applying PBL to teaching numerical methods in Linear Algebra, Least Squares,
Optimal Filtering, Optimal Control, Linear Programming and Nonlinear Opti-
mization. As a result, we recommend that teachers use textbooks, that offer a
good choice of various project assignments. The first one [16] contains: Topic 1
- Elimination and Matrix Inversion Methods totalling 26 assignments, Topic 2 -
Sparse System Solution totalling 48, Topic 3 - Cholesky Decomposition totalling
40, Topic 4 - Orthogonal Transformations totalling 28, Topic 5 - Simultaneous
Least Squares totalling 28, Topic 6 - Sequential Least Squares and Optimal Fil-
tering totalling 25 assignments. The second one [17] contains: Topic 7 - Simplex
Method totalling 70, and Topic 8 - Nonlinear Optimization totalling 30 assign-
ments.

5.1 Using the Modern Information Technologies through the PBL

Today, the functioning of a university is impossible without modern tools and
technologies of access to information. Universities should pay special attention
to the concept of mutually related courses within an educational environment.
The development of an individual and self-realization of each student should be
considered a priority. Modern information technologies give an opportunity to
do so. They allow students to carry out academic tasks with the speed that is
an optimum match for each student’s talents, skills and character traits.

The mapping out of an educational process in this case consists of the creation
of an informational environment.

An information environment assumes the presence of the following compo-
nents:

1. Interconnected and complimentary academic programs focusing on modern
information technologies.

2. A hardware plus software network environment with Internet connections.
3. Computer tools necessary for effective training, including multimedia tech-

nologies.
4. Resources for storage, accumulation and usage of data.
5. Organizational actions targeted at providing an effective interaction of all of

the participants of the educational process within the modern information
environment.

Within a given information environment, the concept of the PBL suggests that
students come up with on their own projects to work on rather than use examples
offered as a part of the lecture material. Such an approach considerably increases
the level of mastering a course.



Computational and Soft Skills Development 1105

A great emphasis should be placed on the choice of topics for students’
projects, as well as the methods of their realization. It is necessary to take
into account both the studied section of the basic academic course, (for exam-
ple, Numerical Methods) and the knowledge received within a mutually related
course (for example, Programming).

The programming course of the Ulyanovsk State University, Ulyanovsk, Rus-
sia, uses the following training method based on Project-Based Learning. In
the first semester, the students work on their projects, which involves using
the studied programming language to program functions and sub-routines. Lab
work within these courses is devoted to discussing various alternative methods
of programming the same components in the presence of the project advisor.

The topics of assignments are based on the material that has not yet been
covered, thus preparing the students for the material that will follow within the
Numerical Methods course, for example:

1. Determining a number characteristics: parity, divisibility, and so on.
2. Determining calculation errors.
3. Processing final but unlimited sequences of numbers.
4. Processing one-dimensional and two-dimensional arrays of numbers.
5. Solving equations and systems of the equations.

The program components of every certain task are stored in the component
library, i.e. in the module focused on the use of numerical methods.

It is possible to build modules on other subjects, such as computer graphics,
graph algorithms, information compression algorithms, information metrics, text
processing, sorting and searching, etc.

If a computer class has an Internet connection, then tasks, task specifications,
the access to help material, and the demonstrational learning programs become
available though the departmental web site, on which all of the educational
material is stored. That allows students to use it both in class and at home
for independent search. E-mail is a popular means of exchanging information.
Teachers use demonstrational and test programs created on the basis of course
video materials.

This cycle is completed by the design of the project based on the components
created earlier. As s result, teachers reach the basic educational goal, namely the
activization of the training process. This process means not only mastering the
programming language itself, but also methods of task decomposition, program
component design, project assembly and debugging, i.e. all of those elements
that are essential for high-level knowledge of the subject.

Moreover, students simultaneously learn concepts and algorithms applied
later in the Numerical Methods course that they effectively use for programming.

6 Conclusions

In this paper, leaning upon existing teaching methods and our own experience,
we present the Project-Based Learning to prepare students for careers in Com-
putational Science and Engineering.



1106 I. Semoushin, J. Tsyganova, and V. Ugarov

References

1. Mori, P., Ricci, L.: Computational Science in High School Curricula: The
ORESPICS Approach. In: Sloot, P.M.A., Kenneth Tan, C.J., Dongarra, J.J., Hoek-
stra, A.G. (eds.): Computational Science – ICCS 2002. Lecture Notes in Computer
Science, Vol. 2331. Springer-Verlag, Berlin Heidelberg New York Barcelona Hong
Kong London Milan Paris Tokyo (2002) 898–907

2. Anido, L., Santos, J.: An Online Environment Supporting High Quality Education
in Computational Science. In: Sloot, P.M.A., Kenneth Tan, C.J., Dongarra, J.J.,
Hoekstra, A.G. (eds.): Computational Science – ICCS 2002. Lecture Notes in Com-
puter Science, Vol. 2331. Springer-Verlag, Berlin Heidelberg New York Barcelona
Hong Kong London Milan Paris Tokyo (2002) 872–881

3. Jeltsch, R.: CSE Program at ETH Zurich: Are We Doing the Right Thing? In:
Sloot, P.M.A., Kenneth Tan, C.J., Dongarra, J.J., Hoekstra, A.G. (eds.): Com-
putational Science – ICCS 2002. Lecture Notes in Computer Science, Vol. 2331.
Springer-Verlag, Berlin Heidelberg New York Barcelona Hong Kong London Milan
Paris Tokyo (2002) 863–871

4. Ruede, U.: Computational Engineering Programs at the University of Erlangen-
Nuremberg. In: Sloot, P.M.A., Kenneth Tan, C.J., Dongarra, J.J., Hoekstra, A.G.
(eds.): Computational Science – ICCS 2002. Lecture Notes in Computer Science,
Vol. 2331. Springer-Verlag, Berlin Heidelberg New York Barcelona Hong Kong
London Milan Paris Tokyo (2002) 852–857

5. Yip, W.: Generic Skills Development through the Problem-Based Lerning and In-
formation Technology. In: Hamza, M.H., Potaturkin, O.I., Shokin, Yu.I. (eds.):
Automation, Control, and Information Technology. Proc. of the IASTED Inter-
national Conference – ACIT 2002. ACTA Press, Anahiem Calgary Zurich (2002)
102–107

6. Wirth, N.: Algorithms and Data Structure; ETH, Zurich (1986)
7. Dijkstra, E. W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs
(1988)

8. Turski, W. M.: Computer Programming Methodology. Rheine, London Philadel-
phia (1978)

9. Kaimin, V.: Course of Informatics: State, Methods and Perspectives. Informatics
and Education 6 (1990) [In Russian]

10. Koushnerenko, A.G., Lebedev, G.V.: Programming for Mathematicians. Nauka,
Moscow (1899) [In Russian]

11. Dixon, J. R.: Design Engineering: Inventiveness, Analisys and Decision Making.
London Sydney (1966)

12. Yershov, A. P.: School Computerization and Mathematical Education. Program-
ming 1 (1990) 3–15 [In Russian]

13. Lipski, W.: Kombinatoryka dla programistow. Warszawa (1982) [In Polish]
14. Ivanova, T. P., Pukhova, G. V.: Computational Mathematics and Programming.

Prosveschenie, Moscow (1988) [In Russian]
15. McCracken, D.D., Dorn, W.S.: Numerical Methods and Fortran Programming.

John Wiley and Sons, Inc., New York London Sydney (1965)
16. Semoushin, I.V., Kulikov, G.Yu.: Computational Linear Algebra: Collected As-

signments for Laboratory Case Studies, Tests and Examinations. Ulyanovsk State
University of Technology Publishers, Ulyanovsk (2000)

17. Semoushin, I.V.: A Practical Course in Optimization Methods. Part 1: Linear
Programming. Ulyanovsk State University of Technology Publishers, Ulyanovsk
(1999)


	Introduction
	Employers' Expectations
	Traditional Approaches to Teaching Programming
	Programming as a Sort of Engineering Design
	Aiming at the Main Professional Qualities
	The Basic Phase of Learning
	Choosing the Subject Area for Algorithm Implementation
	Our Suggestion: Mutually Supplementary Course Teaching

	Project-Based Learning
	Using the Modern Information Technologies through the PBL

	Conclusions

