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Abstract. Recently it has been shown that spectral discretizations pro-
vide another class of multi-symplectic integrators for Hamiltonian wave
equations with periodic boundary conditions. In this note we develop
multi-symplectic spectral discretizations for the sine-Gordon equation.
We discuss the preservation of its phase space geometry, as measured
by the associated nonlinear spectrum, by the multi-symplectic spectral
methods.

1 Introduction

One approach to generalizing the concept of symplecticity to encompass partial
differential equations (PDEs) is to develop a local concept of symplecticity that
treats space and time equally [TI2[3/45]. A Hamiltonian PDE (in the “1+1” case
of one spatial and one temporal dimension) is said to be multi-symplectic (MS)
if it can be written as

Mz + Kz, =V.5z2), zeRY (1)

where M, K € R¥? are skew-symmetric matrices and S : R? — IR is a smooth
function. The term MS is applied to system () in the sense that associated with
M and K are the 2-forms

wUV)=VTMU, kUV)=VTKU, UV eR?

which define a symplectic space-time structure (symplectic with respect to more
than one independent variable).

Symplecticity is a global property for Hamiltonian ODEs. In contrast, an im-
portant aspect of the MS structure is that symplecticity is now a local property,
i.e., symplecticity may vary over the spatial domain and from time to time. This
local feature is expressed through the following MS conservation law (MSCL):

Ow + 0,k = 0, (2)
where U, V are any two solutions of the variational equation associated with ([
Mdz + Kdz, = S.2(2)dz.
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One consequence of multi-symplecticity is that when the Hamiltonian S(z) is
independent of = and ¢, the PDE has an energy conservation law (ECL) [2]

OFE OF 1 1
S E = - 'Kz, F=-TK
o + o 0, S(z) 5% Kz, 5% K, (3)

as well as a momentum conservation law

or oG

ot " oxr
When the local conservation laws are integrated in x, using periodic bound-
ary conditions, we obtain the global conservation of the total energy and total
momentum.

MS integrators are discretizations of the PDE which preserve exactly a dis-
crete version of the MSCL (2). In other words, MS integrators have been de-
signed to preserve the MS structure, but not necessarily the local conservation
laws or global invariants. Even so, numerical experiments using MS integrators,
e.g., for the nonlinear Schrodinger (NLS) equation, have demonstrated that MS
methods have remarkable conservation properties (cf. [4]5]). For example, we
showed that the local and global energy and momentum are preserved far better
than expected, given the order of the scheme. In addition, the global norm and
momentum were preserved within roundoff.

However, the numerical experiments for the NLS equation demonstrated that
MS finite difference schemes can have difficulty in resolving spatial structures in
very sensitive regimes [4]. On the other hand, spectral methods have proven to
be highly effective methods for solving evolution equations with simple bound-
ary conditions. As the number N of space grid points increases, errors typically
decay at an exponential rate rather than at polynomial rates obtained with finite
difference approximations [7]. For the NLS equation we showed that a signifi-
cant improvement in the resolution of the qualitative features of the solution is
obtained with a MS spectral method [6].

In this note we focus on the question of preservation of the phase space
geometry of nonlinear wave equations by MS spectral methods. We use the sine-
Gordon equation (SG) as our model equation. In the next section we present
the MS formulation of the SG equation and a description of the phase space
geometry in terms of the associated nonlinear spectrum. In section 3 we provide
the MS spectral discretization of the SG equation. In section 4 we implement
both MS and nonsymplectic spectral methods and use the nonlinear spectrum of
the SG equation as a basis for comparing the effectiveness of the integrators. The
relevant quantities to monitor are the periodic/antiperiodic eigenvalues of the
associated spectral problem. These eigenvalues are the spectral representation
of the action variables and are directly related to the geometry of the SG phase
space. Significantly, we show that the MS spectral methods provide an improved
resolution of phase space structures, as measured by the nonlinear spectrum,
when compared with non-symplectic spectral integrators.

1
0, G=S8(z)— §zTMzt7 I= %ZTM Zg. (4)
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2 The MS and Integrable Structure of the SG Equation
The MS form of the SG equation,
Ut — Ugg + sinu = 0, (5)

is obtained by introducing the new variables v = u;, w = u,. This results in the
system of equations

Ut = (6)

which can be written in standard MS form (IJ) with

U 0-10 001
z=1wv |, M=1[100], K=1] 000
w 000 -100
and Hamiltonian S(z) = —cosu + & (v? — w?).
The energy and flux are given by
E:S—%zTsz:—cosu+%(v2—w2—uwm+uzw),

F= %ZTKZt = % (uwe — ugw) ,

respectively. Deriving relations (B)-({) for the SG equation, the (ECL) can be
simplified to

Ey+ F, = (—cosu+ (v +w?)), — (vw), = 0.

t

Similarly, the momentum conservation law is given by

I+ Gy = (cosu+ 2(v* + w2))m — (vw), = 0.

2.1 Integrable Structure of the SG Equation

The phase space of the SG equation (Bl with periodic boundary conditions can
be described in terms of the Floquet spectrum of the following linear operator
(the spatial part of the associated Lax pair [9]):

@

L(u,\) = {A -

) 1

where

0-1 01 v 0 10
a=(0) me() e () =)

u is the potential and A € C denotes the spectral parameter.
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The fundamental solution matrix M, defined by the conditions £(u, A\)M =0
and M (x,z;u,A) = I, is used to introduce the Floquet discriminant A(u;A) =
Tr{M(x 4+ L,z;u,\)]. The Floquet discriminant is analytic in both its argu-
ments. Moreover, for a fixed A, A is invariant along solutions of the SG equa-
tion: % A(u, A) = 0. Since A is invariant and the functionals A(u, \), A(u, X') are
pairwise in involution, A provides an infinite number of commuting invariants
for the SG equation.

The spectrum of £ is given by the following condition on the discriminant:
o(L) ={X € ClA(u; ) € R, -2 < A(u; A) < 2}. When discussing the numerical
experiments, we monitor the following elements of the spectrum which deter-
mine the phase space geometry of the SG equation: (a) Critical points A¢, spec-
ified by the condition d/dA\A(g; A)|x=xc = 0, and (b) Double points A%, which
are critical points that satisfy the additional constraints A(g; A)|y=xe = %2,
d?/d\?A|yx=xa # 0. Complex double points correspond, in general, to critical
saddle-like level sets and can be used to label their associated homoclinic orbits.

The periodic/antiperiodic spectrum provides the actions in an action-angle
description of the system. The values of these actions fix a particular level set.
Let X denote the spectrum associated with the potential u. The level set defined
by w is then given by, M,, = {v € F|A(v,\) = A(u, A), A € C}. Typically, M,, is
an infinite dimensional stable torus. However, the SG phase space also contains
degenerate tori which may be unstable. If a torus is unstable, its invariant level
set consists of the torus and an orbit homoclinic to the torus. These invariant
level sets, consisting of an unstable component, are represented, in general, by
complex double points in the spectrum. A complete and detailed description of
the SG phase space structure is provided in [9].

3 MS Spectral PDEs

Bridges and Reich have shown that Fourier transforms leave the MS nature of a
PDE unchanged [3]. A MS discretization of ([[)) is then obtained by truncating
the Fourier expansion. This produces a system of Hamiltonian ODEs which can
be discretized in time using symplectic methods. We briefly summarize these
results.

Consider the space Lo(I) of L-periodic, square integrable functions in I =
[-L/2,L/2] and let U = Fu denote the discrete Fourier transform of u € La([).
Here F : Ly — lo denotes the Fourier operator which gives the complex-valued
Fourier coefficients Uy, € C, k = —o0,...,—1,0,1, ..., 00, which we collect in the
infinite-dimensional vector U = (..., U_1,Up, Uy, ...) € lo. Note that U_;, = U;..
We also introduce the Lo inner product, which we denote by (u,v) and the Is
inner product, which we denote by (U, V). The inverse Fourier operator F~! :
12 — L? is defined by (V, Fu) = (F~1V, u). Furthermore, partial differentiation
with respect to x € I simply reduces to O,u = F~1OU where O : Iy — I, is the
diagonal spectral operator with entries 0 = i27k/L.

These definitions can be generalized to vector-valued functions z € Lg(1). Let
F: L(I) = I¢ be defined such that Z = (Z1,...,2%) = Fz = (Fz',..., Fz9).
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Thus with a slight abuse of notations and after dropping the hats, we have
Z=Fz z=F1Z and 0,2 = (0,2%,...,0,2%) = (Ftez,..., Floz?) =
Floz.

Applying these operators to (), one obtains an infinite dimensional system
of ODEs

L
Mo, Z+ KOZ =V ;5(2), ﬂZ%i/ S(F~12)dx
—L

This equation can appropriately be called a MS spectral PDE with associated
MSCL

02 +0OK =0, 0=7Fw, K=7Fk, (7)

and ECL
OE+OF =0, E=ZFe, F=FFf,

in Fourier space.

3.1 MS Spectral Schemes for the SG Equation

A MS spatial discretization of the PDE is given by the truncated Fourier series,

N I
e—Or(-1)A _ L _ L
N E § “ow = u(r), v = 5 +(—-1)Az, Az = N

with
iZ(k—1)fork=1,...,N/2,
0, =10 forka/QJrl,
_9N7k+2 for k :N/2+2,,N
A family of discrete MSCLs exists which resemble the conservation law (@) in
Fourier space [3].
Using the discrete Fourier transform, system (@) becomes

-0V, + 0, W, = Fk(sinu)
atUk; - Vk (8)
— 0 U, = =Wy

This system of equations can be recombined into a single equation. In Fourier
space we have that (§) becomes

Uy = —0:U;, — (Fsinu),,, (9)
where

(F'sinu), E sin uy e ~ORAT

and the discrete Hamiltonian is given by
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p 1
1 12 2 2
H=3 102 + uloif?] = < >

[

N—

—

COS Uj. (10)

To maintain the multi-symplecticity, a symplectic integrator in time should
be used. To discretize (@) in time we note that the Hamiltonian (0] is separable
which allows one to use explicit symplectic integrators. A general form of explicit
higher order symplectic schemes is given by (see e.g., [10]),

a1 = Py, bl = qj,
A;jy1 = Q4 —CikV’(bi), bit1 :bi+DikT/(ai+1), 1=1,...,m,

Dj+1 = Am,  Gj+1 = b,

where the coefficients C; and D; are determined so that the scheme is symplectic
and of order O(k™). For example, a first order scheme is given by m = 1 and
Cy =1, D; = 1. Similarly, a second-order scheme is given by m = 2 and
Cy=0, Co=1, D = % = D5. A fourth-order integrator Sy can be obtained
by forming the following product of second-order integrators Sy

Sa(k) = Sa2(Bk) S2(ak) S2(Bk),
where o = 233 and 3 = 1/(2 — 2/3).

4 Numerical Experiments

The MS property can be lost in a discretization by using a non-symplectic
discretization either in space or in time. Here we examine the loss of multi-
symplecticity due to the time discretization. We compare the performance of
the spectral discretization implemented in time with second- and fourth-order
symplectic methods (and thus MS) versus non-symplectic Runge-Kutta meth-
ods of the same order. In the numerical experiments we focus on determining
whether the MS integrators preserve the structure of the SG phase space appre-
ciably better than the nonsymplectic methods.

As derived using the inverse scattering theory [12], the SG equation has an
infinite number of local conservation laws and global invariants. In this exam-
ple, rather than monitor the local energy and momentum conservation laws, we
choose to examine the preservation of the nonlinear spectrum, which incorpo-
rates all of the global invariants and determines the phase space structure.

Under the SG flow, the spectrum remains invariant. However, due to pertur-
bations induced by the numerical discretization, the spectrum evolves in time.
The evolution of the spectrum under the numerical flow is primarily due to the
time discretization. To determine the effectiveness of MS spectral integrators
in capturing the phase space structure, we compute the spectral content of the
initial data and monitor its evolution under the different schemes.

The following initial data is used in the numerical experiments:

u(x,0) =7+ 0.1 cos(ux), ur(z,0) = 0,
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with parameters y = 27 /L and L = 2+/27. This initial data is for solutions in the
unstable regime as the zeroth double point remains closed, i.e. the initial data
is on the level set containing the homoclinic manifold. (Closed double points
cannot be preserved by the numerical schemes and in the following experiments
one observes that the zeroth mode is immediately split into a gap state by the
numerical scheme.)

To interpret the evolution of spectrum plots, note that under perturbations
the complex double points can split in two ways — either into a gap along an
arc of the circle, or into a cross along the radius (Figure [I]). For each set of

Fig. 1. The nonlinear spectrum. (a) Homoclinic orbit, (b) Inside the homoclinic orbit
(‘gap state’), (c) Outside the homoclinic orbit (‘cross state’).

experiments, we show a signed measure of the splitting distance for the zeroth
mode as a function of time. Positive and negative values represent gap and cross
states, respectively. When the splitting distance passes through zero, the double
points coalesce and homoclinic crossings occur.

We consider the exponentially accurate spectral scheme (@) implemented in
time with either Runge-Kutta (2nd and 4th-order) or with symplectic (1st, 2nd
and 4th-order) integrators. These integrators will be denoted by S-2RK, S-4RK
and S-1SY, S-2SY, S-4SY. In the spectral experiments we use N = 32 Fourier
modes and a fixed time step At = L/512.

The splitting distance obtained with S-1SY is not shown but it is worth not-
ing that even with the first-order symplectic integrator, bounded oscillations are
observed. The splitting distance for both modes obtained with S-1SY is O(1072).
Using S-2RK and S-2SY (Figure ), the spectrum for the first mode does not
execute any homoclinic crossings for 0 < ¢ < 500 and so the torus component is
accurately preserved. However, the zeroth mode does display homoclinic cross-
ings which occur earlier than with the lower order S-1SY.

Since the initial data is chosen on the homoclinic manifold, it is to be expected
that there will be an earlier onset and higher density of homoclinic crossings
when a more accurate scheme is used. Refinement can accentuate the frequency
of homoclinic crossings as the numerical trajectory is trapped in a narrower
band about the homoclinic manifold. The main observation is that with the
nonsymplectic S-2RK there is a O(1073) linear drift in the error in the nonlin-
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Fig. 2. Left: S-2RK: u(x,0) = w4+ 0.1 cos pz, ut(x,0) =0, N = 32, t = 0 — 500. Right:
S-2SY: u(z,0) = 7 + 0.1 cos uzx, us(z,0) =0, N = 32, t = 0 — 500.

ear spectrum. The error in the nonlinear spectrum is smaller with S-2SY and
further, it doesn’t drift. The drift in the nonlinear spectrum obtained with S-
2RK can be eliminated on the timescale 0 < ¢ < 500 by increasing the accuracy
of the integrator and using S-4RK. In this case the nonlinear spectral deviations
are O(107*) for S-4RK and S-4SY (Figure B). There does not seem to be an
appreciable difference.
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Fig. 3. Left: S-4RK: u(z,0) = m + 0.1 cos pz, u¢(z,0) = 0, N = 32, t = 0 — 500. Right:
S-4SY: u(x,0) = w4+ 0.1 cos uzx, ue(z,0) =0, N = 32, t = 0 — 500.

In long time studies of low dimensional Hamiltonian systems, symplectic inte-
grators have been reported as superior in capturing global phase space structures
since standard integrators may allow the actions to drift [RJIT]. We continue the
integration to t = 10,000 and examine the time slice 10,000 < ¢ < 10, 500. For
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S-4RK (Figure M) a drift has occured. The deviations in the actions associated
with the zeroth mode oscillates about 1.2 x 10~% whereas for S-4SY (Figure H])
it oscillates about 5 x 107°. Although the drift observed with nonsymplectic
schemes can be reduced by using a higher order integrator, it is not eliminated
and simply occurs on a longer timescale. This problem is avoided using the MS
integrator.
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Fig. 4. Left: S-4RK: u(z,0) = m + 0.1 cos px, u(z,0) = 0, N = 32, ¢ = 10000 — 10500.
Right: S-4SY: u(z,0) = 7 + 0.1 cos pz, us(z,0) =0, N = 32, ¢ = 10000 — 10500.

5 Conclusions

MS integrators are discretizations of the PDE which preserve exactly a discrete
version of the MSCL. In this note, we have developed MS spectral integrators
for the sine-Gordon equation. The benefits of these integrators are greater qual-
itative fidelity and superior preservation of local conservation laws and global
invariants. The numerical experiments show that the MS spectral methods pro-
vide an improved resolution of phase space structures when compared with non-
symplectic spectral integrators.
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