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Abstract. This paper takes a look at numerical procedures for comput-
ing approximation of the exponential of a matrix of large dimension. Ex-
isting approximation methods to evaluate the exponentiation of a matrix
will be reviewed paying more attention to Krylov subspace methods and
Schur factorization techniques. Some theoretical results on the bounds
for the entries of the exponential matrix and some implementation details
will be also discussed.

1 Introduction

Several problems in mathematics and physics can be formulated in terms of
finding a suitable approximations to certain matrix functions. Particularly, the
issue of computing the matrix exponential f(A) = e~*4, ¢t > tg, is one of the
most frequently encountered tasks in matrix function approximation and it has
received a renew attention from the numerical analysis community. This prob-
lem arises in many areas of applications, as for instance the solution of linear
parabolic partial differential equations which needs the numerical solution of n
dimensional systems of ODEs ¢ = —Ay + b(¢), y(0) = yo, t > 0 [BI5LE], or
recently in the field of geometric integration. In fact, most Lie group methods,
as Runge-Kutta/Munthe-Kaas schemes, Magnus expansions and Fer expansions
[T9/2028], require to suitable approximate the matrix exponential from a Lie
algebra g C IR"™"™ once (and often repeatedly) at each time step. This can be a
very challenging task for large dimension matrix. Moreover, the context of Lie-
group method imposes a crucial extra requirement on the approximant: it has
to reside in the Lie group G C GL(n,IR) associated to the Lie algebra g.

In general, this property is not fulfilled by many standard approximations
unless the exponential is evaluated exactly.

This can be done for instance for a 3 x 3 skew symmetric matrices, whose
exponential is given exactly by the Fuler Rodriguez formula

sin(a/2) 2
a2 ) 42,
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exp(A) = I + Sma“’“)A+2<

where
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Other exact formulas for exponentials of skew symmetric matrices can be ob-
tained making use of the Cayley-Hamilton theorem which for every A €
GL(n,IR) allows us to have the basic decomposition exp(tA) = ka:_ol fr(t) Ak,
where m is the degree of the minimal polynomial of A and fy,..., f;_1 are some
analytic functions that depend on the characteristic polynomial of A. However,
these algorithms are practical only up to dimension eight. In fact, for large scale
matrices, they require the computation of high powers of the matrix in question
and hence high computational costs due to the matrix-matrix multiplication;
moreover they suffer of some computational instabilities due to the direct use of
the characteristic polynomial.

Based on the above remarks, it appears clear that exponential of large ma-
trices cannot be evaluated analytically and that an algorithm which is simple
and efficient and satisfies some geometric properties is highly desiderable.

In the following pages, we will review some existing approximation methods,
highlighting also some theoretical aspects. In the last section we will give also a
brief overview on a new methodology with can be consider an hybrid scheme for
exponential approximation.

2 Review of Existing Approximation Methods

Classical methods for the evaluation of a matrix exponential can be classified
into three main categories:

(i) rational approximants;
(ii) Krylov subspace methods;
(iii) techniques based on numerical linear algebra;

further, within the context of Lie-group theory other methods for the approxi-
mation of the exponential have been recently introduced:

(iv) the splitting methods.

2.1 Rational Approximants

A rational approximation of the exponential function replaces it by a rational
function, exp(z) = r(z) := pa(2)/qs(%), where p and ¢ are polynomials of degree
a and 3 respectively, ¢(0) = 1 and the error term e* — p(z)/q(z) is small in a
chosen norm. Thus for the matrix exp(A) one has to compute two matrix-value
polynomials, p(A) and g(A), and invert the latter to obtain r(A).

Probably, the most popular approximant of this kind is the diagonal (v,v)
Padé approximations where

po(e) = Y g and a,(e) = pu(-2).
k=1 ) '
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Unfortunately, the Padé approximants are good only near the origin (see [13]).
However, this problem can be overcome with the so-called scaling and squaring
technique, which exploits the identity

exp(A) = (exp(4/2%))%

as follows. First, a sufficiently large & is chosen so that A/2¥ is close to 0, then a
diagonal Padé approximant is used to calculate exp(A4/2¥), and finally the result
is squared k times to obtain the required approximation to exp(A). This basic
approach is implemented in the Matlab function expm to evaluate the exponential
of a matrix with a computational cost between 20n and 30n® operations.

About the behavior of rational approximants when applied to matrix belong-
ing to a Lie algebra, the following theorem states that an important category of
Lie group leads itself to suitable rational approximations.

Theorem 1. (see [§]) Let G = {Y € GL(n,IR) : YTPY = P}, where P is a
non-singular n x n matriz and let g = {X € gl(n, R) : XP+ PXT =0} be the
corresponding Lie algebra. Let ¢ be a function analytic in a neighborhood Uy of

0, with ¢(0) =1 and ¢'(0) = 1. If
o(z)p(—z) =1,  Vz €Uy, (1)
then VX € g, ®(tX) € G for allt € R sufficiently small.

Examples of Lie group verifying the above theorem are the orthogonal and
the symplectic group. Moreover, the diagonal Padé approximants are analytic
functions that fulfill (1), and this guarantees that their approximation of the
exponential of a matrix in the Lie-algebra of a quadratic Lie group lies in the
corresponding group.

Another class of approximations of exp(A) are based on the Chebyshev series
expansion of the function exp(z) on the spectral interval of A. Now let A be an
Hermitian matrix and suppose that e* is analytic in a neighborhood of the
spectral interval [A1, A,] of A. The approximation of exp(A4)v has the form

exp( UNZaka 1A_EI)

where Iy = (A, — A1)/2 and Iy = (A, + A1)/2, Ck is the kth Chebyshev poly-
nomial of the first kind and the aj; are the Chebyshev coefficients of e(1t+t2)
€ [—1,1]. Chebyshev polynomial approximation for the exponential of sym-
metric large sparse matrices was considered in [34], while in [2] a lower bound
for || exp(—7A)v||2 based on the computation of an eigenvector associated with
A1 was obtained. The exponential of a non-symmetric matrix has also been ap-
proximated in [26]27] using the Faber polynomial and the Faber series.
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2.2 Methods of Numerical Linear Algebra

A simple technique to evaluate exp(A) is by spectral decomposition: if A =

VDV~ where D is diagonal matrix with diagonal elements \;, i = 1,...,n,
then
eM 0 ... 0
0 e
exp(A) =Vexp(D)V 1=V | . | v
' etn

This, however, is not a viable techniques for general matrices. In place of spectral
decomposition, one can factorize A in a different form, e.g. into Schur decom-
position (see [13]) A = QTQT, where Q is an orthogonal n x n matrix and T is
an n X n upper triangular matrix or a block upper triangular matrix (when the
eigenvalue of A can be clustered in blocks) and therefore exp(A4) = Q exp(T)QT.

2.3 Krylov Subspace Methods

The basic idea of the Krylov subspace techniques is to project the exponential of
the large matrix onto a small Krylov subspace. Particularly, an approximation
to the matrix exponential operation exp(A)v of the form

exp(A)v & pp_1(A)v,

where A € GL(n,IR), v is an arbitrary nonzero vector, and p,,_1 is a polynomial
of degree m — 1. Since this approximation is an element of the Krylov subspace

K (A, v) = span{v, Av, ---, A" o},

the problem can be reformulated as that of finding an element of K,,(A,v). To
find such an approximation can be used the Arnoldi and nonsymmetric Lanczos
algorithms, respectively. The Arnoldi algorithm generates an orthogonal basis
of the Krylov subspace using v1 = v/||v|| as initial vector.

Arnoldi algorithm
1. Compute v1 = v/|v].
2.Doj=1,2,...,m.
w = Av;
Doi=1,2,...,j
hij = (w,v;) w=w — h; jv;
Compute h,j+1 = ||wH2 and Vjt1 = w/hj+17j.

Arnoldi algorithm produces an orthonormal basis V;,, = [v1,va,...,0m] of
the Krylov subspace K,,(A,v) and a m x m upper Hessemberg matrix H,, with
elements h; ; such that

AVm =Vl + hm+l7mvm+leﬁ
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from which we get H,, = V,L AV,,. Therefore H,, represents the projection of
the linear transformation A onto the subspace K,,, with respect to the basis
Vin. Based on this we can also write exp(A)v =~ (V,, exp(Hy,)e1 (where § =
||v|| ). Now, the problem of computing exp(A)v has been reduced to the task
of computing the lower-dimensional expression exp(H,,)e;, which for m < n is
usually much easier, e.g., by diagonalization of H,,.

The computational cost required by the Krylov subspace methods with the
Arnoldi iteration is sum of the following partial amounts of operations, counting
both multiplications and additions: 2mn?+2nm(m—1) operation to compute the
Krylov subspace K, (A, v) of dimension m; Cm? computations for the evaluation
of the exponential of the Hessemberg matrix H,,; 2nm operations arising from
the multiplication of exp(H,,) with the orthogonal basis. However, when n is
large and m < n, these costs are subsumed in that of the Arnoldi iteration, and
the leading factor is 2mn? (2mn? for matrices).

Some error bounds for the Arnoldi approximation of exp(A)v can be given
for various classes of matrices.

Theorem 2. (see [I7]) Let A be a complex square matriz of large dimen-
sion n, and v a given n-dimensional vector of unit length (||v|| = 1) and
erry = || exp(tA)v—Vy, exp(THyy, )e1]| be the error in the Arnoldi approximation
of exp(TA). Then err,, satisfies the following bounds:

(1) if A is Hermitian negative semidefinite matriz with eigenvalues in the in-
terval [—4p, 0] then:

erry, < 10e=m°/507, VaApT <m < 2pr,
erry, < 10(pt) " te P (ept/m)™, m > 2pT;

(2) if A is skew-Hermitian matriz with eigenvalues in an interval on the imag-
inary axis of length 4p, then

erry < 12e~0D M (epr fm)™, m > 2p7;
(3) if A has numerical range contained in the disk |z + p| << p, then:
erry < 12e " (ept/m)™, m > 2pt.

Another well known algorithm for constructing a convenient basis of K, is
the Lanczos algorithm which, starting from two vectors v; and w;, generates a
biorthogonal basis of the subspaces K,,(4,v1) and K,,(AT, w).

Lanczos algorithm
1. Compute v; = v/||v|| and select w; so that (vy,w;) = 1.
2.D0j=1,2,...,m

a; = (Avj, wj)

’IA)]+1 = AU] ;U5 — 6J’UJ 1

W41 = AT wj ajw; — 0jWj—1

Bit1 = V/(Oj41, Wj41)l, 41 1= Bjasign[(D41,Wj41)]

Vj41 = Uj41/041 and w]+1 = Wjt1/Bj+1-
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Setting V,, = [v1,v2,..,0m], Wi = J|wi,we,...,wy] and T, =
tridiag(d;, a;, B;) then WIV,, =V,,W,, = I, with I the identity matrix and

AVm = Vme + 5m+1vm+1€%a

from which we can derive the approximation exp(A)v = BV;, exp(T,,)e1. The
exponential matrix exp(T},,) can be computed again from the eigendecomposition
T = QD QT with diagonal D,,, via exp(T,) = Qm exp(D,,)QT.

Observe, that both these methods reduce to the same technique when the
matrix is symmetric.

For the Lanczos method it can also be proved analogous error bounds (except
for different constants) as that given for the Arnoldi method in Theorem Pl (see

().

2.4 Splitting Methods

Splitting methods have been considered by various authors in different contexts:
for constructing symplectic methods or volume preserving algorithms, and in
PDE context [5[7I5]. A good survey can be found in [24].

The idea these methods are based on is the following: a given n x n matrix
A in a Lie algebra g is split in the form

A=A, (2)
k=1

where A € g, k = 1,2,...,s, has an exponential that can be easily evaluated
exactly so that

exp(tAy) exp(tAy) - - -exp(tA,) = exp(tA) + O(tPTh)

for sufficiently large value of p > 1. Of course this procedure is competitive with
direct evaluations of exp(tA) only when each exp(tA4;) is easy to evaluate exactly
and their products are cheap.

These requirements are satisfies when each C' = A; is a low rank matrix, i.e.
C =57 bl =ap”, with oy, 8, € R", where p > 1 is a small integer and
a=lar,...,0p, B=1[0,..., 0] are n x p matrices. In this case, the function
exp(tC) can be calculated explicitely via the formula

exp(tC) = I + aD (exp(tD) — I)3". (3)

where D = 3T« is nonsingular (see [5]). Observe that each exp(tD) can be
approximated with a diagonal (v, v)-Padé approximant at the cost of vp? flops.

This low-rank splitting can be easy generalized splitting A into matrices
having one raw and one column (or a few rows and a few columns) (see [5] for
more details). Recently, it has been demonstrated also that the splitting () can
be improved when A belongs to a Lie algebra g by letting

A= Zalem (4)
k=1
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where r = dim(g) and Q1,Qa,...,Q, is a basis of the algebra, and

exp(tA) = exp(g1(t)Q1) exp(g2()Q2) - - - exp(gr (1) Qr),

and g1, go, - .., gr are polynomials ([6]). In this case, the right choice of the basis
and the use of certain features of the Lie algebra assume a fundamental impor-
tance [6].

3 A Recent Approach Based on SVD Techniques

Recently, other approaches for evaluating both exp(A) and exp(rA)y where A
is a sparse skew symmetric matrix of large dimension n, y is a given vector, and
7 is a scaling factor, have been proposed which takes advantage from some of
the approaches discussed before. In [9] a procedure based on an effective Schur
decomposition of the skew symmetric matrix A consisting into two main steps
is presented. We will describe briefly this method. In the first step the skew-
symmetric matrix A is tranformed via the Arnoldi procedure into its Hessenberg
form H, e.g. A = QHQT with Q n x n orthogonal matrix and H an Hessenberg
n X n matrix possessing a tridiagonal structure. Then in the second step a Schur
decomposition of H is obtained by using the singular value decomposition of
a bidiagonal matrix of half size of H. The proposed procedure allows to take
full advantage of the sparsity of A and of the tridiagonal form of H. In fact, the
main cost for evaluating exp(A) is %n3 flops which reduces to 2n3 flops when the
banded structure of H is exploited; further, kn? flops are needed for evaluating
exp(TA)y.

Remark 1. In the implementation of a method to approximate the exponential of
a matrix it could be important to know whether the entries of the matrix function
exp(A) exhibit some kind of decay behavior away from the main diagonal, and
to be able to estimate the rate of decay. Generally, even A is a sparse, exp(A)
is usually a dense matrix. However when the matrix in study presents a banded
structure it can be proved that the elements of the exponential decay very rapidly
away from the diagonal and in practical computation they can be set to zero
away from some bandwidth which depends on the required accuracy threshold
(see [T127]). Let A be a banded matrix of bandwidth s > 1 then the extra diagonal
entries of exp(A) rapidly decay, as

llexp(A)]ki| < exp(p)je—y(2p),  for k,l=1,2,...,m, ()

where [exp(A)]k,; denotes the (k,1) entry of the matrix exp(A), p = maxa<j<p h;
and I,.(z) is the modified Bessel function with I,.(2p) = % for r >> 1 (see [21]
for details). It not always clear at all how, for a bounded A, the nearness of
exp(A) to a banded matrix can be exploited for improving Krylov subspace
approximation or into rational approximation, but it has been used successfully
in the context of splitting methods and in linear algebra methods to save some
computational costs.
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4 Exponentiation in Numerical Methods for ODEs

As observed above, the use of exponential of matrices for the numerical integra-
tion of ordinary differential equations on manifolds has been successfully adopted
for designing a large number of geometrical methods which behave more favor-
ably than standard integrators (see for instance [14]). In this final section, we
will report some geometric integrators for linear and nonlinear differential equa-
tions.

Second and fourth order Magnus methods for vy = A(t)y

MG2 MG4

Ay = Aty + h/2); Ay = Aty + (3 = L)h)

wy, = Ar; A = Atn + (3 + %2)h)

Yn+1 = exp(hwp)yn Wy, = %(Al + Ay) + 1—23h[A2,A1],

Third order Crouch-Grossman method for y' = A(t, y)y:
Ay = A(tn, yn);
Ay = A(t, + %h, exp(%hAl)yn);

Az = A(tn + %h’ exp(i%ghAz) exp(%hAl)ynﬁ

Yni1 = exp(%hAg) exp(—%hAg) exp(%hAl)yn
Exponential methods for nonlinear initial value problem y’ = f(y)
— The exponential fitted Euler method:

Ynt+1 = Yn + h(p(hA)f(yﬂ)’

— A symmetric exponential method:

Yn+1 — Yn = eXp(hA)(yn—l - yn) + Qh@(hA)f(yn)a

ef—1
z

where with A = f’(y,,) is Jacobian matrix of f and ¢ =
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