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Abstract. The paper discusses stochastic models for the synoptic variability of
metocean fields using spatio-temporal impulse representations combined with
Markov walks of storms in space. The models are fitted to an extensive data set
of ocean wave fields from the Barents Sea and verified by studying the fields
duration and extreme value properties.

1   Introduction

Metocean fields, like atmospheric pressure, wind speed, ocean waves etc., have a
complex spatial and temporal variability. Traditionally, the approach for statistical
formalization of such phenomena has been based on a multiscale hypothesis proposed
by Andrey S. Monin [17]. The hypothesis suggests modeling the total variability by
means of a set of stochastic models for each temporal scale separately, and with the
interdependence taken into account parametrically.
Stochastic simulations on the scale of annual and inter-annual variations were consid-
ered in the first part of this paper [9], but for metocean fields such as ocean waves, the
synoptic variability has more interest, since its impact on the total variation and the
extreme events is higher.
The synoptic variability corresponds to temporal scales from a few hours to some
days. For atmospheric processes, the associated spatial scales are 2000–3000 km, as
opposed to 500–700 km for the oceanic ones. The nature of the synoptic variability
may be explained as a stochastic alternation between storms and calms, that is, cy-
clones and anticyclones in the atmosphere [1], and storms and calms for wind and
wave fields [15].
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There have been many papers devoted to the analysis and statistical description of the
marginal [2,3,4,10,15,20,21] and even joint [7,22] synoptic variability of metocean
processes in terms of stochastic series at fixed points in space. However, these meth-
ods become complicated if we consider the variability of the full spatio-temporal
fields. Currently, there are at least two different approaches:
• The Euler approach, considering the joint variability of the field in a set of fixed

points.
• The Lagrange approach, considering the motion of spatial structures in the fields.
The Euler approach adopts multivariate time series models ( ) ( , )k kt tζ ζ= r for descrip-

tion and simulation [19]. In the Lagrangian approach, the alternation of storm and
calm periods may be described in terms of spatio-temporal random events, or im-
pulses [13,15,20]. In general, it is difficult to say which approach is best. However, for
the analysis of extreme events over the whole field, the Lagrange’s approach may be
more reliable because it is independent of choice of particular grid points. In the pres-
ent paper, we describe a computationally efficient method for stochastic simulation of
the synoptic variations of metocean fields based on the Lagrange approach, and fit the
model to an extensive data set from the Barents Sea. The model is verified against the
data for T-years field extremes.

2   The Data Set

The ocean wave field is described in terms of the directional wave spectrum and to-
day, advanced numerical models, based on the numerical integration of the wave ac-
tion equations, produce directional spectra in a fine grid, using the wind field as input.
In this paper, the NCEP/NCAR reanalyzed wind fields 1971–99 [12] and the 4th gen-
eration wave model WaveWatch-v1.18 [23] have been applied for a simulation of a
long-term set of ocean wave fields for the Barents Sea region (Fig.1). The time step in
the simulations is 6 hours, and wind and wave measurements from Barents Sea buoys
were used for verification [16].
Instead of using the full ensemble of calculated spectra [15], we consider here only the
most basic parameter, the significant wave height, ( , )h tr , defined as four times the

standard deviation of the surface height. The synoptic variability is summarized in the
long-term distribution of ( )h t  in fixed points, and Table 1 shows seasonal averages of

the median 0.5h  and the r.m.s. value hσ  of h, for three locations in the Barents Sea, as

marked in Fig. 1.

Table 1. Average wave height distribution parameters

Parameters of long-term wave heights distributions
1 2 3 Total area

Region
5.0h [m] hσ [m] 5.0h [m] hσ [m] 5.0h [m] hσ [m] 5.0h [m] hσ [m

]
Winter 2.2 1.5 2.0 1.4 1.9 1.5 2.2 0.9
Spring 1.4 1.2 1.2 1.1 1.1 1.3 1.4 0.8

Summer 0.9 0.6 0.8 0.6 0.7 0.6 0.8 0.3
Autumn 1.6 1.1 1.6 1.2 1.5 1.2 1.6 0.7
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Fig. 1. Spatial distribution of 100-years
maximal (0.1%) wave heights in the Bar-
ents Sea.

The data set is clearly spatially inho-
mogeneous [14] and the interval analy-
sis, in accordance to [15], shows that
the difference is significant, basically
due to fetch limitations. The inhomoge-
neity of the wave field is even more
clearly seen from a map of the spatial
distribution of extreme events, e.g.
waves encountered once 100 years (see
Fig. 1). These results were obtained by
the BOLIVAR method [15] applied to
the same 28-years data. The highest
waves are observed in the western part,
and the intensity of the waves decreases
towards SE.

3   The Spatial Parametrization of Storms

It is obvious from Table 1 and Fig. 1 that the wave fields are inhomogeneous in space
and have the seasonal periodicity. We are going to describe these features in terms of
spatial structures – storms and calms. For atmospheric phenomena this procedure is
developed rather well, see, e.g. [1]. For ocean fields (such as ocean waves) it is possi-
ble to generalize Angelides’ [2] definition of storms to the spatio-temporal domain,

{ }( ) : ( , )t h t zΩ = ≥r r , (1)

where z is the level of the storm and additional parameters are defined in Table 2.
Note that { , }h+ +r  characterize the extreme and 0{ , }h r  the general behavior of the

storm in space.

Table 3 shows seasonally averaged storm statistics. The probability of storm occur-
rence is Ptotal, and the conditional probability for the numbers of storms is PN. Thus, the
level z = 2m is exceeded in at least one point in 43.7% of the cases during winter.
However, in only 1.4% of those cases the number of storms is greater than two.

The mean, r.m.s. and 95% quantiles for h+, h , and L show that the parameters of the
storms are strongly dependent on z and have a clear annual variability. It is interesting
to observe that the smallest storm diameter L occurs in spring, and this may be caused
by the seasonal variations of fetch related to the ice cover of the Barents Sea. The
maximal ice cover (more that 60% of the sea area) is observed in March-April, and the
minimal cover (10-15%) in September-October [8].

Geospatial vector statistics are displayed for vectors quantities [6,7,9]. These are the
modulus and direction of the mean vector, {| |, }ϕmm , the principal axes and rotation
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angle of the r.m.s. ellipse 1 2{ , , }λ λ α , and the coefficient of variation,

1 2

2 2 1/ 2( ) / | |ρ λ λ= + m . It is seen that +r  is shifted from towards west 0r , but less than

about 50 km. The coefficient of variation ρ  is quite high, however.

Table 2. Characterizing parameters of the storms

Description Notation Definition

Area ( )S tΩ ( )t
d

Ω∫ r

Equivalent diameter ( )L t 2 ( )S t πΩ

Averaging wave height ( )h t ( )
( , ) ( )

t
h t d S tΩΩ∫ r r

Geometric center (“center of gravity”) 0 ( )tr ( , ) ( , )h t d h t d
Ω Ω∫ ∫r r r r r

Maximum wave height ( )h t+
( ) [ ]max ( , )t h t∈Ωr r

Location of the maximal wave height ( )t+r { }: ( , ) ( )h t h t+=r r

Fig. 2 shows two examples of typical storms, six hours apart, with some of the above
parameters marked on the map. The storm velocity, 0 / t= ∂ ∂W r , and although the

mean velocity of the storms is only 3.4-11.9 km/h, the variations may reach 50 km/h
with large variability, as indicated by the relatively high values of both 1λ  and 2λ .

Fig. 2. Examples of storm movement in synoptic terms.

The analysis of Table 3 shows that, in general, only one storm occurs at a time, and
the position of highest wave is not far from the storm’s geometrical center, 0r .

Moreover, { , }h L+  may be applied for defining the storm’s spatio-temporal behavior.
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Table 3. Seasonal estimates of parameters of the storms in the Barents sea. W – Winter, SP –
Spring, SU – Summer, AU – Autumn. See text for further explanations.

4    A Stochastic Model for the Synoptic Variability

Traditional models are based on stochastic differential equations of the form

( , )
h

h G t
t

∂ + ⋅∇ =
∂

W r , (2)

where ( , )G tr  is a source function. For wind waves, Eqn. (2) follows from the wave

action equation [23] after integrating over the spectrum and linearizing the derivative
term. If we expand the solution of Eqn. (2) using Galerkin techniques we obtain

( , ) ( ) ( , | )k k kk
h t a t t= Φ Ξ∑r r , (3)

where { }kΦ  are spatio-temporal basis functions, depending on a set of parameters

kΞ , and { }ka  the corresponding coefficients. The coefficients { }ka  will be obtained

as solutions of a system of algebraic equations after a suitable parametrization of G.
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In contrast to this Eulerian approach, the Lagrange approach considered below writes
the field as moving spatio-temporal impulse structures, and estimates the characteris-
tics directly from the initial data set, without considering the source function.

4.1   Storm Motion

It is possible to model the temporal sequence of storm centres 0 ( )tr as a Markov chain

with a finite number of spatial locations (regions). Fig. 3c shows a map with nine
regions in the Barents Sea, and Table 4 estimates of the transition and limit probabili-
ties of the Markov chain for the level z = 2 (for all seasons). The additional ground
state ”C” (calm) signifies no storms.

Table 4. Transition and limit probabilities of the storm sequence. Here “+” is the probabilities
below 1%, blank space – zero probabilities.

Transition probabilities (%)
Limit
Prob.State

SW S SE W 0 E NW N NE C

SW 11.7 17.2 2.2 15.6 20.6 2.2 + + 29.4 1.2

S 1.6 33.8 8.4 3.6 9.3 2.8 + + + 39.2 6.7

SE + 9.8 27.3 3.3 4.3 5.5 + 1.6 2.7 44.7 3.3

W 3.5 8.1 + 31.3 23.2 1.4 1.2 + + 28.6 5.4

O + 11.2 3.9 5.8 44.2 10.1 + 2.4 1.8 19.9 9.3

E + 4.9 10.2 2.8 8.6 25.3 + 1.4 7.2 38.8 2.9

NW 1.1 2.2 3.3 11.1 2.2 14.4 16.7 1.1 47.8 0.6

N + 2.4 2.4 10.2 3.6 3.0 20.5 22.9 33.7 1.1

NE + 2.1 1.4 2.8 4.5 3.1 3.8 31.7 49.8 1.9

C + 3.3 1.5 3.5 3.7 0.9 0.5 0.5 0.7 84.4 67.6

The diagonal elements dominate, showing that the storms tend to remain in the same
region during one synoptic term. The limit probabilities show strong spatial inhomo-
geneity with the maximal occurrence of storms (9.3%) observed in the central region
(O), and lowest in the NW, N, and SW regions. The Markov chain produces an alter-
nating sequence of storms (of duration ℑ ) and calms (of duration Θ ).

4.2   Parametrization of Spatio-Temporal Impulses

Let us consider a storm 0 0 0{ ( ), ( ), ( )}, [ , ]t h t S t t t t+
Ω ∈ + ℑr . The size of the storm area

( )S tΩ  may in fact be derived from a quantile diagram (Fig. 3a) of wave heights at a

specific synoptic term t: ( )S tΩ  is equal to the fraction of wave heights larger than z

times the total area of the region. It is also possible to apply a regression between
h+ and ( )S tΩ . Some information about the shape of the storm area could be obtained

from moments of inertia parameters 1 2( , , )λ λ α , similar to those in Table 2.
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Fig. 3. The spatio-temporal parametrization of storm
variability.

Our aim is to parametrize the
storm impulses in terms of the
overall maximum wave height
H + and the associated storm area

+S . This parametrization, given
in terms of a set of parameters
{ , , , }H S+ + ℑ Θ  and the Markov

process for 0 ( )tr , generalizes the

BOLIVAR approach [15,20]
from time series to spatio-
temporal fields. The data have
shown that as the values ( , )H + ℑ
as ( , )H L+ + are highly dependent:

(couple correlation are 0.7−0.9).

Since H + is an extreme value, the distribution, conditional on ℑ , is approximately
Gumbel,

( ) ( )( ) ( )( )exp exp , ,
|

0, ,

H A B H z
F H

H z

+ +
+

+

⎧ ⎡ ⎤− − − ℑ ℑ ≥⎪ ⎣ ⎦ℑ = ⎨
⎪ <⎩

          (4)

and this has been validated in [20].
It now remains to specify a time function for ( )h t+  and a spatial field function ( )Φ r

as in Eqn. 3. It is shown in [15] that a piecewise linear function in time is sufficient,
whereas for ( )Φ r  it is possible to use an elliptic cone (1st order), or a elliptic parabo-

loid (2nd order), see also Section 5 below.

4.3   Simulation Procedure

The simulation procedure is shown in Fig. 4. In first step is to estimate the parameters
in Table 2 for each synoptic term t. The level z may depend on the season and ob-
tained from models of the annual variability, as described in [9]. The second step is
the spatio-temporal impulse parametrization of the time series { ( ), ( )}h t L t+ , the pa-
rameters of Eqn. (4), and the parameters (transition and limit probabilities) of the
Markov chain model for 0{ ( )}tr .

The simulation starts with the Monte-Carlo simulation. Based on the realizations, the

durations { }kℑ  are found and the value of +H are simulated from Eqn. (4). The di-

ameter L+ is obtained regression on +H , and finally, all synthesized parameters are
substituted into Eqn. (3), thus generating a synthetic field for all points ( , )tr .
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Fig. 4. Scheme of stochastic simulation procedure of synoptic variability

5   Verification and Extreme Value Analysis

There arise at least three questions for verification of the simulation procedure:
• Does the empirical storm duration statistics fit the Markov model statistics?
• Does the Lagrangian model described above reproduce the annual spatial extremes
seen in the data?
• Does the Lagrangian model reproduce estimates of T-years extremes in the fixed

points estimated by approaches like BOLIVAR or AMS [15]?
Figure 5 answers the first and second questions. Figure 5a shows the quantile biplot
(Q-Q-plot) of simulated (h*) and sample (h) values of annual maxima of significant
wave height of over the whole sea. In Fig. 5b the same biplot is shown for simulated
( *ℑ ) and sample ( ℑ ) values of storm durations. We observe good agreement between
sample and simulated characteristics over the entire field. For answering the third
question, the extremes for return period of 1, 10, and 100 years were calculated for the
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points 1-3 in Fig. 1 by the AMS approach (with parametrical confidence intervals
[15]) and by the Lagrangian stochastic simulation, see Table 5.

Fig. 5. Verification of the simulation model

All simulations were carried out for two types of the spatial impulse approximation
( )Φ r . The 1sr order shape is an elliptic cone, and in this case the Lagrangian model

underestimates the T-years extremes. By assuming the more reasonable form of an
elliptical paraboloid for ( )Φ r , the values become in much better agreement with the

AMS method.

Table 5. Sample and simulated values of T-year wave heights in Barents sea.

Point 1 2 3

T 1 10 100 1 10 100 1 10 100

Point data 10.3 13.2 16.7 9.6 11.4 13.7 9.0 10.8 13.2
Sample

estimates
90%

conf. interval
9.3
11.8

11.9
15.1

15.0
19.2

8.6
11.0

10.3
13.1

12.3
15.8

8.1
10.4

9.7
12.4

11.9
15.2

1st order 8.0 10.3 13.0 6.9 7.8 9.0 6.7 7.5 8.5Simula-
tion 2nd order 9.8 12.2 15.1 9.2 11.6 14.5 8.4 10.6 13.4

The results of the model verification are satisfying and give confidence to use the
Lagrangian model for analysis and numerical studies of the spatio-temporal variations
of extreme synoptic events. Nevertheless, adaptation of the model to more complex
sea basins is problematic and requires further development of the storm impulse ap-
proximations and the random walks model.

6 Conclusions

This paper has demonstrated that computational multivariate statistics of spatio-
temporal fields may be used for describing the synoptic variability of metocean fields.
The synoptic variability is modelled by a Lagrangian approach, which describes the
storm motion by a spatial Markov random walk and the storm’s extension and field
properties as spatio-temporal impulses, characterized by a limited set of parameters.
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Model properties not considered in the fitting have been used for verification, and the
field extremes predicted by the model are shown to fit very well to estimates of ex-
treme values obtained by other approaches.
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