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Abstract. Performance analysis of real applications in clusters and GRID
like environments is essential to fully exploit the performance of new ar-
chitectures. The key problem is the deepening hierarchy of latencies and
bandwidths and the growing heterogeneity of systems. This paper dis-
cusses the basic problems of performance analysis in such clustered and
heterogeneous environments. It further presents a software environment
that supports the user in running codes and getting more insight into the
performance of the application. In order to give a proof of the concept a
code for direct numerical simulation of reactive flows is run in a GRID
like hardware environment, and the performance analysis is presented.

1 Introduction

For some time, parallel programming has been mainly a problem of splitting
the work of a code into a number of equally sized pieces and distributing them
correctly to all available processors. In addition, communication issues had to
be taken care of. This required a substantial amount of work but at least the
programmer could safely assume that the code would run on a homogeneous
architecture. The speed of processors would be the same as well as the speed
of communication between individual processors. Moving from single processor
systems to parallel computers was thus a cumbersome task but added just one
additional level of complexity.

With the advent of clusters [1] and the concept of the GRID [2] the situation
has changed. The new hardware concept is to put together basic building blocks
to form a new system. Such basic building blocks can be anything from a single
processor PC or a multi processor SMP to a full cluster. In that sense what we
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get are systems that are more and more dynamic in composition. In addition,
the programmer is faced with a hierarchy of bandwidths, latencies and protocols
that is getting deeper and more heterogeneous [3]. From the point of view of
performance analysis for real applications this architectural trend represents a
challenge both for the programmer and the tool provider.

This paper deals with the performance analysis of a parallel application from
the area of combustion simulation, which was ported to distributed GRID en-
vironments due to its tremendous demand on resources. During this procedure
two problems had to be solved: first, we had to port the application to a GRID
environment. Second, we wanted to evaluate the potential of this application in
a heterogeneous GRID environment. Both steps required detailed analysis of the
communication patterns of the application, using a performance analysis tool.

The structure of the paper is like follows: the problem of performance analysis
in GRID environments and the performance analysis tool Vampir is presented in
Sect. 2. Section 3 presents the application used throughout the rest of the paper.
Section 4 presents then the performance analysis of this application and how we
solved the identified problems. Finally, in Sect. 5 we summarize the paper and
present the ongoing work in this area.

2 How to Adapt Existing Analysis Technology

Today, clustered parallel computers are available to a large user comunity that
deals with numerical simulation. These systems mostly manufactured from stan-
dard components off the shelf (COTS) often provide a very good price/performance
ratio. Therefore, parallel computing more and more also becomes attractive for
commercial applications and thus widens the community of parallel application
developers who need tool support.

For increased requirements of resources, clusters can be interconnected via a
GRID middleware. Unfortunately, the different communication layers in such a
hybrid system make it highly complicated to develop parallel applications per-
forming well. Therefore, it is crucial to gain insight into the application’s internal
behavior when executed; as this is the only possibility to locate performance bot-
tlenecks in many cases.

The performance evaluation and the subsequent optimization of a parallel
program executed on a GRID imposes special requirements on the generation
and visualization of performance data [4]. In order to allow for a largely trans-
parent view of the application’s behavior, there is a need for some background
mechanism that collects and merges the performance data generated on the dis-
tributed nodes of the GRID. This task is not a simple one as one has to cope
with the synchronization problem of multiple non-synchronous system clocks.
Current performance tools are familiar with the analysis and visualization of
performance data generated on a homogeneous parallel machine. So far, there
is no graphical support for the specifics introduced by GRID computing. In our
work we identified the following key issues towards the performance analysis of
parallel GRID applications:
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– Appropriate data base formats for parallel distributed trace data
– Unified and transparent access to trace data
– Post synchronization of asynchronous trace data
– Visualization of trace data with focus on additional communication layer

Conceptionally, a great deal of these issues has been veryfied with the follow-
ing software framework that was the basis for this paper. For the communication
part we used a GRID-aware implementation of the MPI standard called PACX-
MPI. The performance optimization was carried out with an adapted version
of the performance analysis tool Vampir [5–7] which was one of the results of
the german UNICORE [8] project. The porting of the associated tracing library
Vampirtrace onto PACX-MPI has been done in the scope of the European project
METODIS [9] and is currently further enhanced in the DAMIEN [10] project.
The following properties can be analyzed with this framework:

– Program state changes
– Collective operations
– Peer to peer communication
– Hardware performance monitors

– OpenMP parallel regions
– File I/O
– Environmental information
– Source code locators

Based on event traces, the framework provides timeline representations and
accumulated performance measures for selected time intervals of a program run.
The timelines show the parallel program’s states for an arbitrary period of time.
Performance problems that are related to imbalanced code or bad synchroniza-
tion can easily be detected with the latter as they cause irregular patterns. When
it comes to performance bottlenecks caused by bad cache access or weak usage
of the floating point units, the timelines are less useful. Hardware counters can
be found in almost every processor now. Support of these counters in the form of
hardware performance monitors is available in combination with process timeline
diagrams.

The different performance categories named above need to be related to each
other in order to create a complete view of an application’s runtime behavior.
Flexible grouping allows performance analysis from different perspectives. When
it comes to the visualization task of a multi level GRID application, the grouping
capability can be used to navigate through the trace data on different levels of
abstraction. This approach works fine for both event trace oriented displays
(timelines) and statistic displays for accumulated data.

3 A Real World Application Test Case

This section provides some background on the application from the field of reac-
tive flow simulation which has been analysed in an GRID-like environment. In
Sect. 3.1, we briefly discuss why one is interested in the use of clustered systems
for this type of application. The basic properties of the code and the physical
problem to which it is applied are described in Sect. 3.2.

The performance problems we were faced executing the first runs and the
following performance analysis are described then in the subsequent sections.
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3.1 Direct Numerical Simulation of Reactive Flows

Chemical reactions occuring in turbulent flows play an essential role in a variety
of technical applications like e.g. combustion in automotive engines and gas tur-
bines. There is obviously a large interest in an improved energy efficiency and
reduced emissions of these processes. Better and more accurate models for tur-
bulent combustion are needed to improve the quality of numerical simulations of
such technical combustion processes. The information about the basic interac-
tion mechanisms of turbulent transport and chemical reactions which is needed
for the development of improved turbulent combustion models can be obtained
by direct numerical simulations (DNS), in which turbulent reactive flows are
computed with a great level of detail.

The set of coupled partial differential equations to be solved in DNS are the
Navier-Stokes equations for reactive flows as given e.g. in [11]. These equations
express the conservation of mass, momentum, and energy, which are also needed
for the DNS of non-reacting flows, as well as the conservation of the mass frac-
tions of all the chemical species. The number of species to be considered varies
between nine for the hydrogen-air system and several hundreds in the case of
higher hydrocarbons. The computation of the chemical source-terms and of the
multicomponent diffusion velocities are the most time consuming parts of such
DNS.

Due to the nature of turbulence and the chemical kinetics, a very high reso-
lution is needed in space and time, which leads to a large computational effort.
E.g., the DNS of the temporal evolution of a premixed methane flame over a
physical time of a few milliseconds in a twodimensional domain with an area
of about 3 cm2 took about 60 hours using 256 PEs of a Cray T3E-900 [12]. As
turbulence is an inherently three-dimensional phenomenon, some of it’s aspects
could only be reproduced precisely by performing similar DNS in 3D requiring
at least a hundred times as many grid points. Making efficient usage of large
distributed computing environments would be an essential contribution to reach
this goal.

3.2 The Application Program PCM

PCM is a code developed for the direct numerical simulation (DNS) of reac-
tive flows on parallel computers with distributed memory using message-passing
communication [12, 13]. In favor of being able to utilize detailed models for the
computation of chemical reaction kinetics and the molecular transport, it is cur-
rently restricted to the simulation of two-dimensional flow fields. While some
features of turbulent flows are thus not present in the simulations, it has been
shown that many other aspects of turbulent combustion processes are missing if
oversimplified models for chemistry or molecular diffusion are used [12].

The spatial discretization in PCM is performed using a finite-difference scheme
with sixth-order central-derivatives, avoiding numerical dissipation and leading
to very high accuracy. The integration in time is carried out using a fourth-order
fully explicit Runge-Kutta method with adaptive control of the time step. This
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fully explicit formulation leads to a parallelization strategy, which is based on a
regular two-dimensional domain decomposition of the physical space, projected
onto a corresponding two-dimensional processor topology. For a given compu-
tational grid and number of processors it is tried to minimize the length of the
subdomain boundaries and thus the amount of communication. However, the
different communication speeds in a GRID-computing environment are not con-
sidered in the initial distribution up to now. After this initial decomposition,
each processor node controls a rectangular subdomain of the global computa-
tional domain. In addition to the grid points belonging to a node’s subdomain, a
three points wide halo region is stored on each node. Using the values at the grid
points of this halo region an integration step on the subdomain is carried out
independently from the other nodes. After each integration step, the new values
of the domain boundaries are exchanged between neighboring nodes using MPI.

The application case which has been used for the analysed runs is the DNS
of a turbulent mixing-layer with a cold H2/N2 mixture on one side and heated
air on the other. Periodic boundary conditions are used perpendicular to the
mixing layer. This is a simple model configuration to study the influence of
turbulence on autoignition processes, which is important in combustion systems
like Diesel engines where fuel autoignites after being released into a turbulent
oxidant of elevated temperature. More details on this configuration and some
results regarding the physics can be found in [12, 13].

Recently, our main platform for production runs have been Cray T3E sys-
tems and large PC-clusters on which a high performance and a very good scaling
behavior has been achieved [14]. While our first experiences with PCM in a meta-
computing environment showed a great potential of such distributed platforms
for this type of application, it became also obvious that a considerable optimiza-
tion effort will be needed to fully exploit this potential [15].

4 Analysis of PCM with Vampir

For the tests presented in this paper, 24 processors on a Cray T3E at the High
Performance Computing Center Stuttgart were used. For the distributed tests,
we used two partitions of the same machine, creating a virtual metacomputer.
The first 12 processes were running on the first partition (T3E-A), while the other
12 processes were running on the second partition (T3E-B). The internal latency
between two processes on the same machine was 7 µs, the achievable bandwidth
was around 300 MBytes/s, while the external latency between the two partitions
was in the range of 4 ms, the achievable external bandwidth was approximately
10 MBytes/s. The latter values are typical in local area networks (LAN). Thus,
the communication characteristics of this virtual metacomputer are similar to
GRID environments with respect to the fact, that we have to deal with the same
hierarchies in the quality of communication. Coupling two partitions of the same
machine has additionally one major advantage for our analysis compared to using
two different machines: we could exclude most effects due to network traffic of
other users, which made our results more easily comparable to each other. The
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communication library used to make PCM run across distributed environments
is PACX-MPI [16], an implementation of the MPI standard optimized for GRID
environments.

The following analysis is centered around two questions: During the initial
porting of the application onto PACX-MPI, we were facing the problem, that
the unexpected message queue in PACX-MPI had from time to time an unex-
pected overrun, which neither the developers of the library, nor the application
developers could explain. Second, we wanted to evaluate the potential of this
application for future use in distributed environments, since the computational
demand of realistic simulations is tremendous.

4.1 Processing Part

The application can be split into three parts: preprocessing, processing, and ap-
plication checkpointing. The preprocessing part is dominated by communication,
since all file-operations are handled by the process with rank zero. The execution
time for the preprocessing is increasing from approximately 3.5 seconds for the
Cray-T3E run to about 6 seconds for the metacomputing run. This is due to the
fact that the broadcast-operations require external communication. However,
the preprocessing-part does not have any dramatic influence on the performance
of a real production run.

In a real production run, the overall execution time is dominated by the
processing part, since the application will execute several thousand iterations,
instead of the 20 iterations shown in this analysis. Zooming into this section
shows, that the ratio of communication to computation for this part of the
application is a lot better. Using the summary chart, the exact times spent in
communication and in computation can be determined. For the processing part,
approximately 20 % of the execution time is just spent in communication. Taking
into account, that we have to deal with a tightly coupled application using an
environment with latencies and bandwidths typical for local-area networks, this
result is quite good.

The message statistic display in Fig. 1 shows the communication pattern in
the processing part. Two different patterns can be identified in the left part of
the figure:

1. The penta-diagonal structure reflects the neighborhood communication in
the application, which again is the result of the 2D domain decomposition.

2. Additionally, a much lower amount of communication is visible between the
MPI-process with the rank zero and all other processes. A part of this ad-
ditional communication is due to the load-balancing integrated in the appli-
cation. Node zero collects the execution time of each process for a certain
number of iterations. Depending on the fact, whether the load imbalance be-
tween processes is higher than a user defined limit, work will be redistributed
between the nodes.

The key-issue for an application to achieve high performance in a clustered
environment is high data locality. The assignment of sub-domains to processors
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Fig. 1. Communication pattern in the processing part of PCM for a 4× 6 process
topology, process view (left) and cluster-view (right).

should reflect the hardware topology. One possible approach is to use an opti-
mized MPI Cart create. However, in our case the application performs the map-
ping itself, because it also supports other message passing libraries. Nevertheless
an optimal result may be achieved, because the assumption that processes with
ranks that have small differences are close to each other is fulfilled by PACX-MPI.
But in general the configuration has to be optimized concerning the communica-
tion pattern with respect to periodic boundary conditions, orientation of domain
and others. Here, further analysis with Vampir is needed. The result of one con-
figuration can be seen in in the right part of Fig. 1, where the total amount of
data is shown, which has been sent between processes inside each machine, and
the total amount of data transfered between the machines. The communication
inside each cluster-node is dominating compared to the communication between
both cluster-nodes. While totally 109 MBytes of data have been sent inside of
each cluster-node, just around 26 MBytes of data have crossed the boundaries
of the machines.

The good performance behavior of this part of the application is also visible
in Table 1, where we compare the execution time for five iterations on the virtual
metacomputer with the same number of iterations on the Cray T3E. While the
execution time increases slightly, it is still in the same range as on the Cray T3E.
This is mainly the result of the regular communication pattern shown in Fig. 1
(left) and of the high data locality shown in Fig. 1 (right).

4.2 Application Checkpointing

Long production runs have to save regularly the current status of the run in order
to avoid the loss of results in case of a machine crash. In case several machines
and networks are involved in such a simulation, like given in GRID-environments,
the probability of loosing a subsystem even increases. For the application under
examination here, a regular checkpointing is in addition required for tracking
the temporal evolution of the solution.
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Table 1. Comparison of the average execution time for 5 time steps on a single machine
with vendor-MPI and on two partitions with PACX-MPI.

Number of Execution time Execution time
nodes with Cray-MPI with PACX-MPI

12 17.8 sec 19.1 sec
24 10.3 sec 12.4 sec

This part of the application shows a very different behavior on a single par-
allel machine (see left part of Fig. 2) compared to a cluster of T3E’s (see right
part of Fig. 2). The analysis with Vampir revealed the reason for this very dif-
ferent behavior and in addition explained the problem of gathering thousands of
messages on the process with rank zero mentioned above.

On the Cray T3E, the execution of this part is dominated by the process
with rank zero. As Fig. 2 shows all other processes start sending their part
of the global data to the process zero approximately at the same time, and
block then in a wait-operation. The reason for this blocking is, that for the used
message length, Cray-MPI switches to the synchronous-send mode. Thus, the
wait-operation can only return, when the according receive-operation has been
started. This behavior causes all processes to be more or less synchronized with
process zero.

With PACX-MPI, the processes sending their data to the process zero behave
differently. They send all their messages in a row to the destination process with-
out synchronizations between the individual sends. The reason for this is that
PACX-MPI does not switch to a synchronous send-mode for external operations,
unless explicitly required by the application by using MPI Ssend. Additionally,
the communication-daemons involved in the external operations can receive and
transfer the messages faster than the process zero is able to handle the file-
operations. Since the wait-operation to each of the initiated send-routines can

Fig. 2. Communication behavior of PCM during writing of results-files with Cray-MPI
(left) and PACX-MPI (right)
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return as soon as ’data is safely stored away’[17], they are returning, as soon
as the data is received by the communication-daemon handling all outgoing
messages. Thus, the processes can proceed immediately with the next commu-
nication, without being synchronized with process zero. This behavior explains
the gathering of much higher number of messages at the process doing the file
I/O operations than in the single system case. To achieve a similar behavior with
PACX-MPI like with Cray-MPI, the application will have to use the synchronous
versions of the send-operations of MPI in this part of the application.

5 Conclusions

In this paper, the problems for performance analysis of parallel applications
arising in clustered systems are briefly discussed. The components of a software
environment have been presented which enables the user to run and analyse
applications in GRID-like environments. The functionality of this software en-
vironment has been demonstrated for a real world application. In addition to
an optimized, topology-aware application and an optimized, GRID-aware MPI
library a thorough understanding of the MPI implementation was required to
achieve good performance.

The visualization capabilities of Vampir enabled us to analyse the commu-
nication pattern of the application with respect to the different levels of com-
munication, which helps to find the best application settings for a given GRID
environment. The analysis with Vampir was not only useful for application tun-
ing but also revealed the reason for the buffering of an unexpectedly high number
of messages with PACX-MPI. The reason for this problem could not be found
without the help of a runtime analysis tool. Once found, it was relatively easy
to implement a solution for this problem.

Future extension of Vampir will include further features that are necessary
to understand possible performance problems. Examples are a visualization of
the protocol types which have been used for the individual messages, or the
gathering of environment variables on the different platforms in the Grid that
influence the behavior of the MPI library, like MPI BUFFER MAX.
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