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Abstract. Semiclassical initial value representations (IVR) of the S ma-
trix elements for state to state transitions provide a practical way for in-
corporating quantum mechanical effects into the classical estimate of the
transition probability of elementary chemical processes. This semiclassi-
cal IVR approach applies to the study of the reactive and non-reactive
transitions in atom diatom collisions. As a case study the collinear H +
Cl2 reaction is considered.

1 Introduction

Molecular dynamics calculations are becoming a kind of universal tool to ra-
tionalize the behaviour of chemical processes. However, most often, they are
performed using classical mechanics that can not reproduce quantum effects.
Accordingly, highly inaccurate results are obtained when interference, tunneling
and resonance effects are important. On the other hand, quantum calculations
are exact but difficult to carry out especially when dealing with large systems.
As an alternative to quantum techniques semiclassical approaches are often used.
Semiclassical approaches retain the simplicity of classical mechanics (they are
based on the integration of classical trajectories) while introducing quantum-like
corrections by exploiting the information carried by the classical phase.
A key problem of the traditional semiclassical formulations is that they require
the solution of a two point boundary problem and the numerical search for re-
lated root trajectories. This makes the search for semiclassical contributions to
the transition probabilty cumbersome and unsuitable for parallel and distributed
computing. In this paper has been adopted the more recent initial value represen-
tation (IVR) approach [1] that avoids the search for root trajectories by properly
mapping the formulation of the S matrix elements into the space of the initial
variables.
In order to more easily tackle the problem of dealing with reactive transitions
on which the literature (see ref. [1], and references therein) is rather poor our
investigation was focused on atom diatom collinear systems and on the possibil-
ity of using a unified approach for both reactive and non reactive transitions.
The paper is articulated as follows: in Section 2 the IVR semiclassical method
is outlined; in Section 3 the specialization of the method for collinear systems
is given; in Section 4 the H + Cl2 reactive case study is illustrated; in Section
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5 a  comparison of exact quantum and IVR semiclassical product vibrational
distributions is carried out.

2 The IVR Semiclassical S Matrix

The basic semiclassical approach [1] pivots on the definition of the matrix el-
ement of the time evolution operator (propagator) K1→2(t) that for the atom
diatom case reads

K1→2(t) ≡ 〈ψ2|e−iHt/h̄|ψ1〉 =∫
dx1

∫
dx2ψ

∗
2(x2)ψ1(x1)〈x2|e−iHt/h̄|x1〉 (1)

which is the probability amplitude for a transition from the bound initial state
1 (described by the wavefunction ψ1 in the coordinate x1 at time zero) to the
bound state 2 (described by the wavefunction ψ2 in the coordinate x2 at time t)
for a system whose Hamiltonian is H . Using the standard semiclassical approx-
imation for the coordinate representation of the propagator one has

K1→2(t) =
∑
roots

∫
dx1

∫
dx2ψ2(x2)

∗ψ1(x1)

×
[
(2πih̄)F

∣∣∣∣ ∂x2

∂P1

∣∣∣∣
]−1/2

eiSt(x2,x1)/h̄ (2)

where F is the number of degrees of freedom and, Pi is the momentum of the ith
state. St(x2,x1) is the classical action associated with the trajectory connecting
x1 to x2 in time t that can be formulated as

St(x2,x1) =

∫ t

0

dt′P(t′)ẋ(t′)−H(P(t′),x(t′)) (3)

where primed quantities are related to products and dotted quantities are
time derivatives.
The Jacobian factor in Eq. (2)

∣∣∣∣ ∂x2

∂P1

∣∣∣∣ =

∣∣∣∣∂xt(P1,x1)

∂P1

∣∣∣∣
is evaluated at the roots, that is at the solutions of the nonlinear two boundary
value problem

xt(P1,x1) = x2. (4)

As already mentioned, in general, there are multiple roots since xt needs not to
be a monotonic function of P1 and the summation in Eq. (2) is over all such roots.
This process is often unstable (especially when both reactive and non reactive
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To eliminate the need for carrying out the root finding the IVR hprocess, approac
the final osition inmaps p independent variable x to the initial2 variable P and1

evaluates numerically the integrals of Eq. (2). In addition, the propagator in
the Cartesian coordinates or momentum tation itsrepresen [3] is substituted by
semiclassical formulation. This leads to the expression

K1→2(t) =

∫
dx1

∫
dP1

[∣∣∣∣∂xt(x1,P1)

∂P1

∣∣∣∣ /
(2πih̄)F

]1/2
eiSt(x1,P1)/h̄ψ2(xt)

∗ψ1(x1)

(5)

in which St(x1,P1) ≡ St(xt(x1,P1),x1), x2(x1,P1) is written in a more
general form as xt(x1,P1), the double ended boundary condition of Eq. (4) has
been replaced by an integral over the phase space of the initial conditions and
the Jacobian factor (∂xt/∂P1) appears in the numerator (rather than in the
denominator as is in Eq. (2)) avoiding so far possible singularities.

3 The Collinear Atom Diatom Case Study

To carry out the numerical evaluation of the semiclassical S matrix we have
simplified the problem by considering the atom diatom collinear processes of the
type A + BC (νi) → AB (νf ) + C (reactive) and A + BC (νi) → A + BC (νf )
(non reactive). The classical collinear atom diatom Hamiltonian function reads
as

H =
1

2µA,BC
P 2
R +

1

2µBC
P 2
r + V (R, r) (6)

where V (R, r) is the potential of the system R and r the reactant Jacobi co-
ordinates, PR and Pr are the related momenta, µBC and µA,BC the reduced
masses of the diatom and of the atom-diatom system. Classical trajectories were
computed by integrating the following set of Hamilton equations

Ṙ = PR/µA,BC (7)

ṙ = Pr/µBC (8)

ṖR = −∂V/∂R (9)

Ṗr = −∂V/∂r (10)

(where Ṙ, ṖR, ṙ and Ṗr are the time derivatives of R, PR, r and Pr, respec-
tively) using a fourth order Runge-Kutta method and adjusting the stepsize to
guarantee energy conservation and collision time constance.
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To compute the phase associated with each trajectory, the following fifth
differential equation was integrated

Ṡt = −ωṅ−RṖR (11)

where St is the already mentioned classical action formulated in terms of the
action angle variables J and ω (defined as ω =

∫
∂Pr(J)/∂Jdr and 2n

(
n+ 1

2

)
h̄ =

J =
∮
Prdr [4] with n being the classical vibrational number continuously vary-

ing through the integer values of its discrete quantum analogue ν and ω being
the oscillator phase angle).

The collision is started at a value of R sufficiently large (R0) that makes the
atom diatom interaction negligible. The quantum number νi for the transition
1 → 2 determines the initial value of the classical number ni and hence the
initial value of PR (PR0) by energy conservation. The initial value of ω (ω0), to
which corresponds uniquely a value of r (r0), is chosen on a regular grid in the
range [-0.5 - 0.5]. Thus the initial boundary conditions are

R0 = Large

PR0 = −{2µA,BC[E − εni ]}1/2

r0 = r(ω0, ni)

Pr0 = Pr(ω0, ni)

(12)

where E is the total energy of the system and εni the initial vibrational energy
of the diatom in the state ni = νi.
In the procedure illustrated above, the use of action angle variables is motivated
by the need of carrying out a proper selection of initial conditions that is more
satisfactory if the oscillator phase is sampled uniformly. For this reason, our com-
putational procedure first selects the initial values of the action angle variables
of state 1 on a regular grid, then carries out the integration of the Hamilton
equations using the Jacobi coordinates and finally transforms back all quantities
into the action angle variables of state 2.
For our calculations we have considered the diatoms as a Morse oscillators, since
this makes it possible to work out analytically the relationships linking the ac-
tion angle variables to the other variables.

The IVR formulation of the semiclassical S matrix can then be obtained by
expressing it in terms of the propagator and integrating over time t. The IVR S
matrix element (SIV R1→2 (E)) then reads [5]

SIV R1→2 (E) = −e−i(k1R1+k2R2)

∫
dPr0

∫
dr0

∫
dPR0

×
[∣∣∣∣ ∂(rt, Rt)

∂(Pr0 , PR0)

∣∣∣∣ /(2πih̄)F
]1/2

ei[Et+St(Pr0 ,r0,PR0 ,R0)]/h̄

ψ2(rt)ψ1(r0)h̄
√
k1k2/PRt

(13)
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with µ being the reduced mass of the system and Rt and rt the value of the
Jacobi coordinates obtained at time t by integrating Eqs. 12 starting from the
initial conditions R0, r0,PR0 and Pr0 . The two kj(j = 1, 2) factors are the initial
and final wave numbers defined as

kj =

√
2µ(E − εj)/h̄

2. (14)

Finally, the detailed probability P1→2(E) of the 1 to 2 transition is worked
out as usual from the related SIV R1→2 (E) element by taking its square modulus

P1→2(E) = |SIV R1→2 (E)|2. (15)

4 The H + Cl2 Case Study

The potential V adopted for the H + Cl2 system is of the LEPS type

V (rAB , rBC , rAC) =
3∑

i=1

Qi −



3∑
i≤j

(Ji − Jj)
2/2




1/2

with

Qi =

{
1Ei − 1−∆i

1 +∆i

3Ei

}
/2

Ji =

{
1Ei +

1−∆i

1 +∆i

3Ei

}
/2

1Ei = Di exp[−βi(ri − rei )]{exp[−βi(ri − rei )]− 2}
3Ei =

1

2
Di exp[−βi(ri − rei )]{exp[−βi(ri − rei )] + 2}

where the index i extends over all diatomic pairs (AB, BC and AC) and ri is
the interatomic distance of the ith diatom. The value of the parameters Di, r

e
i , βi

and ∆i (for the H + Cl2 system [6]) are given in Table 1.

Table 1. Value of the LEPS parameters for HCl and Cl2

.

βi(Å
−1) rei (Å) ∆i Di(eV)

HCl 1.86932 1.273200 0.067000 4.625970
Cl2 2.008020 1.999800 -0.113000 2.516970
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Among practical advantages of using the LEPS potential is the fact that the
asymptotic diatom quantum eigenenergies have the closed form expression

εν = −D
[
1− h̄β

(2µD)1/2

(
ν +

1

2

)]2

(16)

where, as usual, ν is the vibrational quantum number and the angle variable ω
is related to the internuclear distance r by the relationship

r − re =
1

β
ln

[
1− (1 + εν/D)1/2 cos(2πω)

(−εν/D)

]
. (17)

The vibrational wave function φν(r) has the following form

φν(r) = Nνe
−z/2zc/2Lcν(z) (18)

where
Nν = [βcν!/Γ (k − ν)]1/2,

c = k − 2ν − 1,

k = 2(2µBCD)1/2/βh̄ (19)

z = ke−β(r−re)

with Lcν(z) being the Laguerre polynomial and Γ (i) the Gamma function [7].

5 Product Vibrational Distributions

As already mentioned, non reactive processes are the most consolidated case
study for semiclassical approaches and the most relevant for Molecular Dynam-
ics calculations. The peculiarity of the case considered here is that the LEPS
potential includes the reactive channel and, therefore, it highly distorts the tri-
atom even when reaction does not occur and when reactive processes coexist
with non reactive ones. This makes of particular interest the study of the near
the threshold behaviour. A preliminary study of the results obtained for the H +
Cl2 system is given in [8] where an analysis of the convergence with the number
of integrated trajectories is performed. Here, an extended analysis of the accu-
racy of state to state IVR semiclassical probabilities for both reactive and non
reactive processes is given.
The accuracy of semiclassical results is tested against quantum results by com-
paring the structure of the calculated product vibrational distribution (PVD).
For illustrative purposes we report here also quasiclassical values determined by
assigning the classical result to the closest quantum state and then taking the
ratio between the number of trajectories assigned to the considered quantum
final state and the total number of integrated trajectories.
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(Etr) extending up to 1.26 kcal/mol (the threshold energy) are given. As ap-
parent from the figure quasiclassical probabilities are always 1 for the elastic
transitions and 0 for the inelastic ones. On the contrary, semiclassical IVR val-
ues (empty squares connected by dashed dotted lines) reproduce much better
the structure of quantum (solid diamonds connected by dashed lines) probabili-
ties. The deviation of semiclassical IVR from quantum results of the PVD does
not usually exceed 10% although there is no clear systematic for the related error.

At energies above the threshold the product channel becomes accessible and
the probability of populating some product vibrational states differs from zero.
Reactive state to state semiclassical IVR probabilities calculated at νi = 0 (up-
per row) and νi = 1 (lower row) are plotted (dashed dotted line) in Fig. 2 as
product vibrational distributions (as a function of ((νf ) at increasing value of
the total energy (from the left hand side to the right hand side). For comparison
also exact quantum (dashed line) and quasiclassical ones (solid line) are shown
in the same figure.

The figure shows that differences between reactive probabilities calculated
using different methods can be quite large. In particular, the deviation of qua-
siclassical results is significant when product vibrational distributions show a
definite structure (like the bimodal shape obtained at νi = 1). On the contrary,
the agreement between semiclassical IVR and quantum PVDs is definitely bet-
ter in particular because they reproduced the related structure is when there is
more than one maximum.

6 Conclusions

The significant progress made by Molecular Dynamics is prompting the introduc-
tion of more accuracy in calculating state to state transition probabilities when
classical mechanics dynamical techniques are used. In this paper numerical tests
of the traditional way of building quantum corrections into classical mechanics
approaches through the calculation of the classical phase associated with the
trajectories described by the system and the evaluation from it of semiclassi-
cal S matrix elements have been discussed. In particular, the recently proposed
IVR formulation of the semiclassical S matrix has been considered because of
its straightfarword concurrent implementation. Results of the test are extremely
encouraging and plans are being made for its implementation on metacomputer
and grid platforms.
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In Fig. 1 the non reactive PVDs calculated for values of the collision energy
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Fig. 1. PVDs of the semiclassical IVR inon reactive probabilities (empty squares con-
nected by dashed-dotted lines P0→ν′(Etr) (upper panel) and P1→ν′(Etr) (lower panel)
calculated at νi = 0 (upper panel) and νi = 1 (lower panel) at Etr = 0.02, 0.03,
0.052 and 1.26 kcal mol−1 (from the left hand side to the right hand side)for the H +
Cl2(νi)→ HCl(νf ) + Cl. For comparison also quantum (diamonds connected by dashed
lines) and quasiclassical (solid squares connected by solid lines) results are shown.
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Fig. 2. PVDs of the semiclassical IVR reactive probabilities (empty squares connected
by dashed-dotted lines P0→ν′ (Etr) (upper panel) and P1→ν′ (Etr) (lower panel) calcu-
lated at νi = 0 (upper panel) and νi = 1 (lower panel) at Etr = 3, 4, 5 and 6 kcal mol−1

(from the left hand side to the right hand side) for the H + Cl2(νi)→ HCl(νf ) + Cl.
For comparison also quantum (diamonds connected by dashed lines) and quasiclassical
(solid squares connected by solid lines) results are shown.
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