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Abstract. The problem of fault point detection in the linear stochastic
discrete systems is considered. To solve this problem the algorithm with
the finite size of the Bank of competitive Kalman filters is suggested.
Theoretical results are confirmed by numerical experiments.

1 Introduction

The fault point detection problem has been discussed in many papers (see, for
example [1], [2], [3]). One of the possible solutions to this problem is to use
the Bank of competitive Kalman filters and some hypotheses testing algorithm.
However, there is the problem of practical implementation of the Bank due to
the increase in the number of Kalman filters in direct proportion with the length
of testing interval. This causes large computational expenses.

To avoid this drawback, a new algorithm with the Bank of bounded number
of Kalman filters is suggested in this paper. The authors multiple numerical
experiments indicate the efficiency of this new algorithm for the fault point
detection.

2 The SPRT for the Problem of Fault Detection

Consider the problem of detecting whether a stochastic discrete time system has
one set of parameters or another.

Let the system be characterized by the following equations:

xt+1 = Φtxt +Btut + Γtwt (1)

zt = Htxt + vt (2)

where xt is the n-dimensional state vector, zt is the m-dimensional system out-
put, ut is the control input, and {w0, w1, . . .} and {v1, v2, . . .} are mutually inde-
pendent zero-mean Gaussian sequences of independent vectors. Without loss of
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generality, their covariances Q and R are assumed to be reduced to identity ma-
trices: Q = I and R = I. This can be easily done by normalizing input noise in
(1) and measurements in (2). The sequences are considered independent of Gaus-
sian initial x0 with mean x̄0 and P0. At any time t, we need to be ascertained, by
performing a test on the sequence of measurements Zt = {z1, z2, . . . , zt}, which
of the following two hypotheses is true.

Hypothesis H0: system parameters are Φt0, Bt0, Γt0, and Ht0.
Hypothesis H1: system parameters are Φt1, Bt1, Γt1, and Ht1.

Consider two Kalman competitive filters designed, correspondingly, under
the assumption of hypothesis H0 or H1. Let subscript i denote the hypothesis
number, i.e. filter number, then the filter equations are:

Time propagation
x̂−

ti = Φtix̂
+
t−1,i +Btiut, P−

ti = ΦtiP
+
t−1,iΦ

T
ti + ΓtiΓ

T
ti .

Vector measurement update
Kti = P−

ti H
T
ti (HtiP

−
ti H

T
ti + I)−1,

νti = zt −Htix̂
−
ti ,

P+
ti = (I −KtiHti)P−

ti

x̂+ti = x̂−
ti +Ktiνti .

(3)

Each of the following sequences

Nt0 = {ν10, ν20, . . . , νt0} and Nt1 = {ν11, ν21, . . . , νt1} (4)

consists of mutually independent entries ντi = zτ − Hτix̂
−
τi, τ = 1, 2, . . . , t,

subject to the condition that the corresponding hypothesis, i = 0 or i = 1, is
true.

The Wald sequential probability ratio test contains the following recursive
algorithm to evaluate the likelihood ratio λt = ln p{Nt1|H1}/p{Nt0|H0}:

λt = λt−1 + µt, t ≥ 1

where
2µt = log detΣt0 − log detΣt1 + νT

t0Σ
−1
t0 νt0 − νT

t1Σ
−1
t1 νt1 . (5)

The mean and variance of sequences (4) for filters i = 0, 1 are given by

E{νti} = 0, E{νtiν
T
ti} = Σti = HT

tiP
−
ti Hti + I .

The value of λt is then tested against two threshold levels A and B (where
A > B):


if λt ≤ B, the test is terminated with the choice of H0.
if λt ≥ A, the test is terminated with the choice of H1.
if A > λt > B, the test is repeated.

The thresholds A and B are chosen in the following way. Let α be the prob-
ability of choosing H1 when H0 is true, and β be the probability of choosing H0
when H1 is true. Then

A = log
1 − β

α
and B = log

β

1 − α
.
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The initial value of the test is λ0 = log{P1/P0}, where P0 and P1 are a’priori
probabilities of occurrence of hypotheses H0 and H1. If P0 = P1 = 1

2 (i.e.
hypotheses H0 and H1 are equiprobable), then it is clear that the initial value
λ0 = 0.

The SPRT requires the computation of likelihood ratio function λt at each
moment t. There was suggested an efficient algorithm to compute a likelihood
function for any competitive filter [4]. The basis for this algorithm is the Conven-
tional Kalman Filter with scalar measurement update. The authors obtained two
equivalent proofs of the equivalence between two methods of likelihood function
evaluation: the vector method with the help of equations (3)–(5) and the scalar
method according to the suggested algorithm [4]. The first proof is based on the
Information form of Kalman Filter [4], and the second one is algebraic [5]. In the
same manner as the Conventional Kalman Filter, one can modify [4] the other
data processing algorithms that are described in [6] and based on the covariance
factorization: Potter Square Root; Bierman LD-Covariance Factorization; and
Carlson Triangular Covariance Square Root.

3 Competitive Fault Point Detection Using a Bank of
Kalman Filters

In this section, we solve the problem of fault point detection. The fault point is
the time instant at which the parameters of system (1), (2) were changed.

Suppose that hypothesis H0 describes the nominal mode of system operation,
i.e. the fault-free mode.

3.1 The Exact Solution to the Problem of Fault Point Detection

Consider that a ratio test is started at time t = t0, but the point of fault
occurrence t01 ∈ [t0, tN ], (where ti ∈ [t0, tN ] is a testing interval) is unknown.
Therefore, in addition to the main hypothesis H0, N − 1 alternative hypotheses
Hj are added instead of one alternative hypothesis H1. Each Hj means that
at the moment tj , the system parameters are changed from {Φt0, Bt0, Γt0, and
Ht0} to {Φt1, Bt1, Γt1, and Ht1}.

Taking into account these prior assumptions, we can write down the expres-
sion for the likelihood ratio function:

λj0
t = log

P{νj
j1, . . . , ν

j
t1|Hj}

P{νj0, . . . , νt0|H0} = λj0
t−1 + µj0

t , t ≥ 1 (6)

where

2µj0
t = log detΣt0 − log detΣj

t1 + νT
t0Σ

−1
t0 νt0 − (νj

t1)
T
(Σj

t1)
−1
νj

t1 . (7)

The value λj0
t needs to be calculated at the moment t = t0 + j, where t ∈

[t0, tN ].
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In Sect. 2, two Kalman filters were required, one based on the assumption of
hypothesis H0 and the other on assumption of H1. In the present case, we need
one Kalman filter per hypothesis, that is, N + 1 filters.

Let us denote the Kalman filter based on H0 by F0 and the Kalman filters
based on Hj by Fj , j = 1, . . . , N . Then in (7), νj

t1 is a residual with the covari-
ance Σj

t1, obtained from the Kalman filter Fj . So we have the Bank of N + 1
competitive Kalman filters.

The ratio test for system fault point detection is as follows [3]:




1. If ∀t < tN λj0
t ≤ B, the test is terminated with the choice of H0

(the system fault point was not detected on the testing interval).
2. If ∃! j : λj0

t ≥ A, the test is terminated with the choice of Hj

(the system fault point was detected at the moment t0 + j).
3. If ∀j : B < λj0

t ≤ A, the test is repeated for t+ 1.
4. If ∃i �= j : λj0

t ≥ A and λi0
t ≥ A, the test is terminated with

the choice of “leading” hypothesis Hl, for which the value of like-
lihood function is maximum, that is λl0

t = max{λj0
t , λ

i0
t } (the

system fault point was detected at the moment t0 + l).
5. If ∀i, j λj0

t ≤ B and B < λi0
t < A, the hypothesis Hj is excluded

from the set of the considered hypothesis and the test is repeated
for t+ 1 .

(8)

Now we can describe the testing algorithm:
The test is performed on the testing interval [t0, tN ]; from the beginning of

the test at each subsequent moment t = j, the Kalman filter Fj based on Hj is
included into the contest of filters (into the Bank of Kalman filters).

Thus, after processing N measurements N +1 filters are added to the Bank,
moreover each filter Fj , j = 1, . . . , N matches likelihood against filter F0.

If all hypotheses Hj , j = 0, . . . , N , are equiprobable, then the initial value of
each likelihood ratio function λj0

t equals zero. When a’priori probabilities of all
hypotheses are given, the initial condition for the functioning of filter Fj is the
value λj0

0 = log{Pj/P0}, where Pj is an a’priori probability of hypothesis Hj .
So, the value λj0

t begins to change at Step j of the test at the moment of filter
Fj connection. For all t < t0 + j, λj0

t = 0, that corresponds with the condition
that the filter is disconnected.

It is clear that according to the suggested algorithm, the number of compet-
itive filters grows at each step of the test. This, in turn, leads to the growth of
necessary calculations of likelihood ratio function at each step of the test. The re-
alization of such algorithm in an ideal case will require unlimited computational
resources (machine time and an enormous memory size for the data storing).

Therefore in spite of the simplicity of the suggested algorithm and the guar-
anteed solution to the problem, there is the essential drawback that the algorithm
is not practically realizable for the solving of real life problems because of the
unbounded growth of computations at each step of the test.
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In the next section, we solve the problem of elimination of such obvious
drawback of the obtained solution, i.e. the unbounded growth of the number of
competitive filters.

3.2 The New Algorithm of Fault Point Detection with the Bank of
Finite Number of Filters

From the previous topic, there follows the necessity to find the solution to the
problem of Fault Point Detection with the Bank of finite Number of Kalman
filters. In other words, the problem to evaluate the necessary number of com-
petitive Kalman filters is posed.

We need to determine the average sample numbers required for decision mak-
ing between the two hypotheses H1 and H0. We first need to know the average
values of the increment in the probability ratio λt at each stage in the test.

In other words, we need to obtain expressions for

µ1 = E

{
log(detΣt0)1/2 − log(detΣt1)1/2 +

1
2
{νT

t0Σ
−1
t0 νt0 − νT

t1Σ
−1
t1 νt1}|H1

}

µ0 = E

{
log(detΣt0)1/2 − log(detΣt1)1/2 +

1
2
{νT

t0Σ
−1
t0 νt0 − νT

t1Σ
−1
t1 νt1}|H0

}

at time t = n.
Let the system and filter equations be given by (1), (2), and (3), and all

system parameters not depend on time (i. e. Φti = Φi, Hti = Hi, Bti = Bi,
Γti = Γi).

Suppose that in filter equations we use system parameters Φ1, H1, B1, Γ1
corresponding to the change in the characteristics (i.e. hypothesis H1) instead
of true values of matrix parameters Φ0, H0, B0, Γ0 (i.e. hypothesis H0). In this
case, in order to determine the values of µ0 and µ1, we need to know the actual
correlation matrix of residuals Σ̄t0 = E{νt0ν

T
t0}. In the case of optimal Kalman

filter, the residuals ν(t) have zero mean and covariance matrix Σt0.
Let us write Σ̄t0 as

Σ̄t0 = E{νt0ν
T
t0} = E{(H0xt −H1x̂

−
t )(H0x

T
t −H1(x̂−

t )
T )} + I . (9)

After the expansion, we obtain the formula for calculation of correlation matrix
of residuals

Σ̄t0 = H0E{xtx
T
t }HT

0 −H0E{xt(x̂−
t )T }HT

1
+H1E{x̂−

t (x̂
−
t )T }HT

1 −H1E{x̂−
t x

T
t }HT

0 + I .
(10)

For its calculation, we need to first solve the following difference equations:

E{xtx
T
t } = Φ0E{xt−1x

T
t−1}ΦT

0 + Γ0Γ
T
0 +B0ut−1E{xT

t−1}ΦT
0

+Φ0E{xt−1}uT
t−1B

T
0 +B0ut−1u

T
t−1B

T
0 (11)

E{xt(x̂−
t )

T } = Φ0E{xt−1(x̂+t−1)
T }ΦT

1 + Φ0E{xt−1}uT
t−1B

T
1
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+B0ut−1E{(x̂t−1)T }ΦT
1 +B0ut−1u

T
t−1B

T
1 (12)

E{xt(x̂+t )
T } = E{xt(x̂−

t )
T }(I −HT

1 Kt) + E{xtx
T
t }HT

0 Kt (13)
E{x̂−

t (x̂
−
t )

T } = Φ1E{x̂+t−1(x̂
+
t−1)

T }ΦT
1 + Φ1E{x̂+t−1}uT

t−1B
T
1

+B1ut−1E{(x̂+t−1)
T }ΦT

1 +B1ut−1u
T
t−1B

T
1 (14)

E{x̂+t (x̂+t )T } = (I −KtH1)E{x̂−
t (x̂

−
t )

T }(I −HT
1 K

T
t )

+(I −KtH1)E{x̂−
t x

T
t }HT

0 K
T
t

+KtH0E{xt(x̂−
t )

T }(I −HT
1 K

T
1 )

+KtH0E{xtx
T
t }HT

0 K
T
t +KtK

T
t (15)

E{x̂+t } = (I −KtH1)E{x̂−
t } +KtH0E{xt} (16)

E{x̂−
t } = Φ1E{x̂+t−1} +B1ut−1 (17)

E{xt} = Φ0E{xt−1} +B0ut−1 (18)

satisfying the initial conditions

E{x0xT
0 } = E{x0(x̂+0 )T } = E{x̂+0 (x̂+0 )T } = P0 + x̄0x̄

T
0

E{x0} = E{x̂+0 } = x̄0 .
(19)

Similarly, we can obtain the formula for Σ̄t1 when true values of matrix
parameters are Φ1, H1, B1, Γ1 (this corresponds to hypothesis H1), but in filter
equations parameters Φ0, H0, B0, Γ0 are used.

Consider the equilibrium solutions

Σ0 = lim
t→∞Σt0, Σ−1

t0 = [σ0ij ]

Σ1 = lim
t→∞Σt1, Σ−1

t1 = [σ1ij ]

Σ̄0 = lim
t→∞ Σ̄t0 = [σ̄0ij ], Σ̄1 = lim

t→∞ Σ̄t1 = [σ̄1ij ] .
(20)

Then

2µ1 = log detΣ0 − log detΣ1 +
m∑

i,j=1
(σ̄0ijσ

0
ij) − m

2µ0 = log detΣ0 − log detΣ1 −
m∑

i,j=1
(σ̄1ijσ

1
ij) + m .

(21)

Now we can find the average sample numbers:
N̄B is the average number of samples required to reach any threshold from the
start of the test, assuming H0 is true;
N̄A is the average number of samples required to reach any threshold from the
start of the test, assuming H1 is true.

These sample numbers are given by

N̄B = [αA+ (1 − α)B]/µ0

N̄A = [(1 − β)A+ βB]/µ1 .
(22)
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Let M be the necessary number of samples for decision making in the fault
point detection problem. We evaluate M as

M = max(N̄A, N̄B) . (23)

That means that on the testing interval [t0, tN ] at each time moment onlyM+1
Kalman filters can work simultaneously, and each Kalman filter is based on the
corresponding hypothesis.

From the beginning of the test through the first M steps, filters Fi, i =
1, . . . ,M , enter the Bank. They match the Filter F0 corresponding the hypothesis
H0 which means that “the fault point was not detected on the M steps of the
test”.

The ratio test for system fault point detection is the same as (8).
The only difference is that competitive filters make a queue, moreover each

filter works for only a limited number of steps (in our case, M steps). At the
(M +1)-th step of the test, the filter Fi, which was in the Bank during M steps
and has not made the decision (this corresponds to condition B < λ1i0 < A), is
excluded from the Bank. Instead, the new filter FM+1 is based on the hypothesis
HM+1 which means that “the system fault occurred on the (M + 1)-th step of
the test”, that is, immediately after moment t = t0 +M + 1.

This algorithm allows us to solve the fault point detection problem with less
computational resources consumption.

However, such algorithm is more complex due to the necessity of obtaining
the value M . This requires us to solve equations (9)–(19). Moreover, if estimate
ofM is found incorrectly, and it is less than the real number of samples required
for decision making, then according to the suggested algorithm the solution may
not be found.

4 Numerical Example

To show how the algorithms of the previous sections may be used to detect the
parameter change point for linear dynamical systems, we consider the following
example taken from the inertial navigation [7]:

xt+1 =




0.75 −1.74 −0.3 0.0 −0.15
0.09 0.91 −0.0005 0.0 −0.008
0.0 0.0 0.95 0.0 0.0
0.0 0.0 0.0 0.55 0.0
0.0 0.0 0.0 0.0 0.905


xt +




0.0 0.0 0.0
0.0 0.0 0.0
24.64 0.0 0.0
0.0 0.835 0.0
0.0 0.0 1.83


wt

zt =
[
1 − e 0 0 0 1 − f
0 1 − g 0 1 − h 0

]
xt + vt, e, f, g, h = {0, 1}

{wt} and {vt} are zero-mean white Gaussian sequences with covariances Qt = I3,
and Rt = I2 (In is the n-dimensional identity matrix). These equations describe
the damped Shuler loop driven by the exponentially correlated 3-dimensional
noise wt [7].
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The program for numerical experiments was written in Pascal.
Let us describe the numerical experiments for the problem of fault point

detection. Consider the previous example and two hypotheses: H0 which means
the nominal mode of the system (the system parameters are Φ0 = Φ(ti), Γ0 =
Γ (ti), B0 = B(ti), H0 = H(ti), where [e, f, g, h] = [0, 0, 0, 0]; and H1 which
means the fault mode of the system (the system parameters are Φ1 = Φ(ti), Γ1 =
Γ (ti), B1 = B(ti), H1 = H(ti), where {[e, f, g, h]|e, f, g, h ∈ {0, 1}}\{[0, 0, 0, 0]}.
So, there are 16 types of system faults. All experiments are conducted, provided
that the system fault point is random.

Table 1. Detection of the fault point in the system. The type of possible fault is
[0, 0, 1, 0]. The algorithm with the increasing KFB size.

Experiment
number

LF at the moment
of detection

The fault
point

Detected fault
point

Delay in
detection

Accepted
hypothesis

KFB
size

1 16.715688 39 39 0 H1 44
2 12.159357 21 22 1 H1 22
3 66.411028 36 36 0 H1 36
4 12.822501 33 33 0 H1 35
5 22.600478 11 25 14 H1 26
6 96.973967 41 41 0 H1 41
7 67.016929 16 16 0 H1 16

Mean delay in detection: 2 iterations

Let us demonstrate the efficiency of fault point detection algorithms consid-
ered in Sect. 3.1 and Sect. 3.2.

We conducted a series of experiments for the problem of fault point detec-
tion. The conditions of experiments are: the error probabilities α = 0.00001,
β = 0.00001, two thresholds A = 11.512915 and B = −11.512915; the point
of possible system fault is unknown and random for each experiment. For all
experiments, the system fault really takes place. That means that it is necessary
to confirm the hypothesis H1 and to detect the fault point by using the avail-
able measurements. The experiments are conducted for the faults of two types:
[e, f, g, h] = [0, 0, 1, 0] and [e, f, g, h] = [0, 0, 0, 1].

The efficiency of the testing algorithm described in Sect. 3.1, can be evaluated
according to the data of Table 1. The testing interval here is [1, 50], the number
of experiments equals 7, and the series of 500 experiments were also conducted.

According to the experimental data, we conclude that the algorithm with
increasing size of the Kalman Filters Bank (KFB) provides a guaranteed solution
of the fault point detection problem, but it has one obvious drawback. Since the
maximum number of Kalman Filters in the Bank tends to the length of testing
interval, the algorithm can not be practically applied to the real life problems.

Now we will try to evaluate the efficiency of the algorithm with the Bank of
finite number of competitive Kalman Filters, described in Sect. 3.2.
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The results of numerical experiments are shown in Table 2. For the realization
of a ratio test before testing, we need to evaluate the necessary parameter M
(that is the KFB size) by using the equations (9)–(19). It is clear that this
estimate will differ in different types of system faults. Table 2 shows the testing
results for the system fault [0, 0, 1, 0] and the testing interval [1, 100]. Given the
error probabilities α and β and the type of system fault, the maximum number
of simultaneously competitive filters needed for the decision making equals 27.

Table 2. Detection of the fault point in the system. The type of possible fault is
[0, 0, 1, 0]. The algorithm with the finite KFB.

Experiment
number

LF at the moment
of detection

The fault
point

Detected fault
point

Delay in
detection

Accepted
hypothesis

KFB
size

1 24.242963 48 49 1 H1 9
2 39.596861 55 55 0 H1 24
3 18.171810 5 5 0 H1 7
4 41.172073 40 40 0 H1 6
5 19.113414 12 17 5 H1 27
6 15.477792 31 31 0 H1 19
7 35.373164 11 11 0 H1 6
8 41.409267 76 77 1 H1 12
9 18.612180 19 19 0 H1 8

Mean delay in detection: 1 iteration

Table 3. Detection of the fault point in the system. The type of possible fault is
[0, 0, 1, 0]. The algorithm with the finite KFB.

Experiment
number

LF at the moment
of detection

The fault
point

Detected fault
point

Delay in
detection

Accepted
hypothesis

KFB
size

1 24.242963 48 49 1 H1 9
2 — 55 — — — —
3 18.171810 5 5 0 H1 7
4 41.172073 40 40 0 H1 6
5 — 75 — — — —
6 — 67 — — — —
7 35.373164 11 11 0 H1 6
8 41.409267 76 77 1 H1 12
9 18.612180 19 19 0 H1 8

According to the data in Table 2, the algorithm with the finite number of
Kalman filters is efficient for solving the fault point detection problem. So, we
have practically verified the correctness of the theoretical estimate for the KFB
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size, because all the experiments required that the real number of competitive
filters be less or equal to 27.

The efficiency of such algorithm essentially depends on the correct choice of
the KFB size. If parameter M is incorrect, and is less (but not greater) than
the real number of required Kalman filters, then the solution may not be found.
Such case is confirmed by the data of Table 3. Here the value of M was chosen
to be 10, but really it must be 27. According to Table 3, in 50% of cases the
fault point was not detected on all testing interval [1, 100] (dash corresponds to
these cases).

5 Conclusion

The concept of the Bank of Competitive Kalman Filters is applicable to the
problem of fault point detection in stochastic system behavior.

The algorithm with increasing number of Kalman filters provides a guar-
anteed solution to the fault point detection problem, but it has an essential
drawback: it can not be practically realized for the real life problems.

To avoid this drawback, another algorithm with the finite size of Kalman
Filters Bank was considered in this paper. The authors suggest a method to find
the estimate of required size of Kalman Filters Bank. All theoretical results are
confirmed by multiple numerical experiments.
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