
Developing a Simulation Tool Box in MATLAB
and Using It for Non-linear Adaptive Filtering

Investigation�

Oleg Gorokhov and Innokenti Semoushin

Ulyanovsk State University, 42 Leo Tolstoy Str., 432970 Ulyanovsk, Russia
gorohov@icbank.ru SemoushinIV@ulsu.ru http://staff.ulsu.ru/semoushin/

Abstract. In this paper we develop a special purpose tool box for com-
plex computational tasks solution in the area of stochastic adaptive sys-
tem design. The proposed tool box is used to analyze the influence of
different factors on the quality of numerical algorithms.

1 Introduction

Modern system design requires high performance computational modelling tools.
MathCAD, MATLAB and Maple are examples. The complexity of problems in
the adaptive filtering area often does not allow us to use the standard procedures
and tool boxes to analyze the problems even of small dimensions. The reason
lies in the amount of time necessary for computing while analyzing the influence
of a set of many factors on the algorithm performance. This raises the problem
of developing a special tool for complex system investigation.

The purpose of this paper is twofold. The first goal is to develop an efficient
tool box for specific problems in the field of adaptive linear or non-linear filtering.
The second part of the paper demonstrates the application of the designed tool
box and presents the simulations results. The core of the designed tool box is
implemented as a dynamic link library, and its interface part is made MATLAB-
compatible.

2 Adaptive Non-linear Filtering Problem

Consider the linear stochastic time-invariant discrete-time model

xt+1 = Φxt + Γwt

zt = Hxt + vt
(1)

which is widely used in processing the experimental data for a state of dynamical
plants in stochastic environment. Here xt ∈ IRn is the state vector, zt ∈ IRm is the
� This work was supported in part by the Russian Ministry of Education (grant

No. T02-03.2-3427).

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 436–445, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Developing a Simulation Tool Box in MATLAB 437

measurement vector and {w0, w1, . . .} and {v1, v2, . . .} are zero-mean indepen-
dent sequences of independent identically distributed random vectors wt ∈ IRq

and vt ∈ IRm with covariances Q and R respectively. Measurements are assumed
to be incomplete, i.e. m < n.

Classical approach to the state estimation for model (1) is that corresponding
to the Kalman filtering. However, sometimes it is impossible to use the Kalman
filter if the system contains a predesigned part which is nonlinear by its nature.
When noise distributions are not Gaussian, optimal filter is not Kalman. In
these cases, the whole system should be characterized by nonlinear equations,
whose parameters are difficult to optimize. For such situations, an adaptive (or
learning) approach seems to be the only possible way. It becomes absolutely
necessary if, for a variety of reasons, parameters of model (1) are not precisely
known and thus should be identified from experimental data [1], [2].

We assume that the initial time is placed at −∞ and adopt the non-restrictive
assumptions that R > 0, Q ≥ 0, and system (1) is stabilizable and completely
observable. Additionally, the spectral radius of Φ is assumed to be strictly less
than one to have all the processes in (1) wide-sense stationary. In the below
experiments, uncertainty inherent to (1) resides in Γ , Q and R only.

In the most case, the estimator yt ∈ IRn is given by a nonlinear functional
O(·) intended to generate a p-step-ahead (predicted) estimate of the state xt+p

using all available measurements zt−τ , 0 ≤ τ < ∞. Thus, we have

yt = O(zt−τ , 0 ≤ τ < ∞) (2)

where each k-th component yk
t of yt is desribed by the discrete time Volterra

series

yk
t =

m∑

l=1

∞∑

d=1

{
∞∑

τ1=0

. . .

∞∑

τd=0

hkld(τ1, . . . , τd)z
(l)
t−τ1

· · · z(l)
t−τd

}

and where l = 1, 2, . . . , m denotes the component index in the vector of measure-
ments zt, d is the order of nonlinearity of hkld(τ1, . . . , τd), the d-order kernel of
Volterra series. We assume the estimator to be stable so that {yt} is a wide-sense
stationary sequence.

Let the system error, original performance index and a problem to be solved
are as follows:

et = xt+p − yt, Jo = E{‖et‖2} .

Problem 1. Given performance index Jo, formulate the auxiliary performance
index Ja depending on some available sequence εt so that

Ja = E{‖εt‖2} = Jo + const (3)

where const does not depend on set of the nonlinear estimator parameters, thus
performance indices Ja and Jo have the same optimal points on the set.

We use a new solution to the problem given in [3] with the following notations:
zt
t+1−s ∈ IRsm is a column vector composed of column vectors zt+1−s through

zt, s stands for the observability index, and T is the n × n observability matrix.



438 O. Gorokhov and I. Semoushin

3 Nonlinear Filtering and MATLAB Algorithm
Implementation

In this section we present the general computational algorithm for adaptive esti-
mation of parameters. We also demonstrate how the adaptive filtering algorithm
is implemented by the designed MATLAB tool box procedures. The MATLAB
object objExperiment (Fig. 1) includes all information and settings for nu-
merical simulations such as stabilization filter time, signal noise ratio, initial
conditions.

objExperiment =struct(’Tmax’, ’TimeStab’, ’TimeSwitching’, ...
’Alpha’, ’Qbefore’, ’Qafter’, ’Rbefore’, ’Rafter’, ’PHIbefore’,...
’PHIafter’, ’P0’, ’AdaptiveProcedure’);

Fig. 1. Tool box experiment object structure

Assuming, for generality sake, that the uncertainty can reside in matrices Φ,
Γ and covariances Q and R, we denote the parameterized versions of these matri-
ces as Φθ, Γθ, Qθ and Rθ respectively. The system (1) state generation procedure
consists of two parts: before change point in the system and after change. The
goal of the after-change algorithm is to identify the new parameter values. Tool
box function phiModel (Fig. 2) demonstrates the top-level programming code
without taking into consideration the details hidden in the low-level functions
phiModelInitialization, phiGenerateNoise and others.

The model state estimates are obtained as a result of nonlinear transforma-
tion Lθ{·} of the feedback suboptimal filter estimate

x̃(t−i+1) = Φθ0 x̃(t+i )
x̃(t+i ) = Lθ0{x̃(t−i ) + Kθ0ν(ti)}
ν(ti) = z(ti) − Hx̃(t−i ) .

(4)

The gain Kθ is replaced by the result of each iteration (the whole identification
process). The initial value for Kθ0 is set as some nominal value which is chosen
a’priori to satisfy the stability conditions. The corresponding implementation is
given at (Fig. 2) where the estimation of the system state vector is performed
via Kalman filter before reaching stabilization and when via stabilized filter.

The adaptive model is appended to this system and started with initial state
taken from the suboptimal filter (4). It has the following form

g̃(ti+1) = Aθ ĝ(ti)
ĝ(ti) = Lθ{g̃(ti) + Dθη(ti)}
η(ti) = z(ti) − H∗g̃(ti)

(5)



Developing a Simulation Tool Box in MATLAB 439

function [objObject] = phiModel(objExperiment, objObject, t)
if (t == 0)

phiModelInitialization(objExperiment, objObject);
else

if (t < objExperiment.TimeSwitching)
objObject = phiBeforeSwitching(objObject,t);

else objObject = phiAfterSwitching(objObject,t);
end;

objObject = phiGenerateNoise(objExperiment, objObject,t);
objObject = phiGenerateDynamics(objExperiment, objObject,t);
end;

end;

Fig. 2. Tool box model object code generating state of the system at time t

where Aθ = TθΦθT
−1
θ , H∗ = HT−1

θ and Tθ is the observability matrix defined in
[3]. Let us assume that the collective parameter θ represents the set of adjustable
parameters in the model indexed accordingly (the Kalman gain Dθ, the matrix
Aθ and the nonlinear transformation Lθ{·}).

Fig. 3. Tool box filter implementation

Denote the stackable vector of [η(ti−s+1), . . . , η(ti)] as Hi
i−s+1 where s is the

maximal partial observability index. Then the model error between the adaptive
and suboptimal models can be written in the following form

ε(ti) = N (Dθ)Hi
i−s+1 (6)



440 O. Gorokhov and I. Semoushin

where N (D) is the structure transformation of adaptive model gain D as defined
in [3].

Fig. 4. Tool box adaptive filter implementation

The sensitivity model that reflects the influence of the adjustable parameters
on the model error (6) and in fact is the partial derivatives of vector ε(ti) wrt.
vector θ, is defined by three types of recursions according to the placement of
adjustable parameter. Let µ denote the sensitivity model state vector. We have

µ̃j(ti) = Aθµ̂j(ti−1)
µ̂j(ti) = ∂Lθ

∂x ((I − DθH∗)µ̃j(ti) + ∂Dθ

∂θj
η(ti))

(7)

where θj is a parameter of vector Dθ. The second type of sensitivity equations
is defined for parameters θj of transition matrix A:

µ̃j(ti) = ∂Aθ

∂θj
ĝ(ti−1) + Aθµ̂j(ti−1)

µ̂j(ti) = ∂Lθ

∂x (I − DθH∗)µ̃j(ti) .
(8)

The influence of the nonlinear estimator parameters on the error (6) are calcu-
lated as follows

µ̃j(ti) = Aθµ̂j(ti−1)
µ̂j(ti) = ∂Lθ

∂θj
+ ∂Lθ

∂x µ̃j(ti) .
(9)

All recursions start with initial values µ̂j(t0) = 0 for each θj . Let vector ξj(ti)
be used to denote −H∗µ̃j(ti). The history for vectors ξj(ti) and Hi

i−s+1 should
be accumulated during the iterations (4)-(9) till s last values are re-calculated.



Developing a Simulation Tool Box in MATLAB 441

The sensitivity matrix S(ti) is computed as follows

S(ti) = ∂N (D)
∂θj

Hi
i−s+1 + N (D)∂Hi

i−s+1
∂θj

(10)

where ∂Hi
i−s+1
∂θj

is the stackable vector of the s last values ξj(tk). Then the gradient
model is defined as the product of transposed sensitivity matrix S(ti) and ε(ti)

q(ti) = ST (ti)ε(ti)
q̂(ti) = βq̂(ti−1) + (1 − β)q(ti)

(11)

where β is the exponential smoothing factor, 0 ≤ β < 1.

Fig. 5. Tool box numerical simulation function

The suboptimal adaptation procedure (SAP) shown here as one of possible
variants, is defined for each adjustable parameter θj through the recursion

pj(ti+1) = pj(ti) + ‖∂ε(ti)
∂θj

‖2

π(ti) = θ̂(ti) − diag(pj(ti+1))−1q̂(ti) .
(12)

(Here and below π(ti) denotes a trial value for θ̂(ti+1)). The stability condition
of the linear part of estimator, ρ [(I − DH∗)A] < 1, should be checked for trial
estimate π(ti). Also, the constraints of the nonlinear estimator should be satisfied
for the next estimate θ̂(ti+1) = π(ti).



442 O. Gorokhov and I. Semoushin

The adaptive filter tool box function is depicted by Fig. 4. The renewal of
the adaptive filter parameters with the new calculated values occurs only at each
adaptive step, which is obtained by function phiAdaptiveStep.

4 Simulations Results

The integral percent error (IPE) will show the algorithm performance. The tool
box numerical simulations function (Fig. 5) depends on the possible range of
aspects to be evaluated. The extended experiment is planned to analyze the in-
fluence of a set of different aspects on the IPE-characteristic of the algorithm, to
reveal some effects during the identification process and finally to illustrate the
applicability of the nonlinear filtering algorithm and its MATLAB tool box im-
plementation. The set of aspects includes signal-to-noise ratio (SNR defined by
‖Q‖/‖R‖), stability property of the object, the presence of nonlinear estimator,
the type of adaptation procedure (suboptimal, i.e. SAP, optimal, i.e. OAP, or
simple stochastic approximation, i.e. SSAP), a number of iterations, and initial
values for the estimates. Main user function (Fig. 5) is used to execute the algo-
rithm for the ranges of analyzed aspects (phiSnrRange, phiStabilityRange),
to compare results (phiAnalyseResults) and to plot graphs (phiMakeGraphs).

[RANGES]
stabInterval=((0.01, 1.000); 0.0; 10.0);
snrInterval=((0.001, 100.0); 0.0; 10.0);
snrAdaptiveProcedure=SAP;
snrvsiterationsIpeLevel=10.0;
adjMaxAdapationTime=((10000, 10000000); 0.0; 10.0);

[SYSTEM]
PHI = [-0.8, 0.1];
Q = 0.04;
R = 0.06;
Gd = [0.0; 0.4];
H = [1.0, 0.0];

Fig. 6. Experiment settings

We investigate the properties of the proposed algorithm and define the IPE
as follows

ρipe = ‖θ∗(ti)−θ∗∗‖
‖θ∗∗‖ (13)

where θ∗(ti) is the estimate of parameter θ obtained at time ti and θ∗∗ is the
optimal (i.e. true) value of θ.



Developing a Simulation Tool Box in MATLAB 443

We consider the following example of the second order model

x(ti+1) =
[

0 1
f1 f2

]
x(ti) +

[
0
α

]
wd(ti)

z(ti) = Hx(ti) + vd(ti)
(14)

with unknown values of the state and measurement noise covariances Q and R
and α = 0.4, β = 0.0. The measurement matrix H is

[
0, 1

]
and parameters f1

and f2 are known and fixed. Nonlinear estimator has the nonlinear state trans-
formation function which is linear for small state values and constant outside the
linear area. The tangent of the linear part θ is unknown and should be identified.
In this experiment we simultaneously identify the parameters of adaptive filter
and the optimal tangent θ of the nonlinear estimator.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Integral percent error vs signal−noise ratio. Stability=0.1, Iterations=106

Signal−noise ratio

In
te

gr
al

 p
er

ce
nt

 e
rr

or Linear 

Nonlinear 

Fig. 7. IPE characteristic for linear and nonlinear problems, stability factor - 0.1

The experiment is a set of algorithm runs with chosen algorithm settings and
defined values of modelling aspects. We distinguish the primary and secondary
modelling aspects of the experiment that corresponds to an interval of values
and single value accordingly. Experimental graphs depict the IPE-characteristic
behavior vs the primary aspect interval with the secondary aspects values chosen
arbitrarily. The experiment settings for considered example are set in tool box
configuration file as shown in Fig. 6.

The primary modelling aspect is SNR, and we successively analyze the SNR-
interval [1.0 · 10−3, . . . , 1.0 · 102].



444 O. Gorokhov and I. Semoushin

Graphs of Fig. 7 and Fig. 8 represent the IPE behavior vs the time scale for
nonlinear estimation for different stability factors. In all other cases the quality
of the estimates becomes better as the number of iterations grows.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Integral percent error vs signal−noise ratio. Stability=0.9, Iterations=106

Signal−noise ratio

In
te

gr
al

 p
er

ce
nt

 e
rr

or

Nonlinear

Linear

Fig. 8. IPE characteristic for linear and nonlinear problems, stability factor - 0.9

The stability factor depends on location of the eigenvalues of matrix Φ and it
occurs that there exists an insensitivity area effect of the considered nonlinearity.
This effect entirely defines the shape of the IPE-graph while the SNR interval
[1, . . . , 102] does not influence on the quality of estimating process for stability
factor 0.9. However, as the number of iterations is increased, the IPE-quality
becomes better till the non-improvable level corresponding to the insensitivity
area, is attained. This effect can be revealed on Fig. 9.

5 Conclusions

In this paper, we develop the special purpose MATLAB compatible tool box and
demonstrate its applicability to computational investigation of complex systems
described in terms of high-dimensional vector-matrix stochastic difference equa-
tions. This project was motivated by developing novel numerical algorithms for
adaptive identification of a non-linear optimal discrete-time steady-state estima-
tor intended to predict the state of the given stochastic system.

This is only one of the possible applications of the designed tool. Another
problem investigated with the tool box is iterative control design [4]. The tool



Developing a Simulation Tool Box in MATLAB 445

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

IPE behaviour, different stability factors

Signal−noise ratio

In
te

gr
al

 p
er

ce
nt

 e
rr

or

S=0.1

S=0.5

S=0.9

Fig. 9. IPE characteristic for different stability factors

box dramatically extends the capabilities of MATLAB as it makes computational
experiments far easier to conduct.

References

1. Landau, I.D. (ed.): Identification des Systemes. Les Bases de l’Identification des
Systemes. Hermes, Paris (2001)

2. Caines, P.: Linear Stochastic Systems. John Willey & Sons, New York Chichester
Brisbane Toronto Singapore (1988)

3. Semoushin, I.V., Tsyganova, J.V.: Indirect error control for adaptive filtering. In:
Neittaanmaki, P., Tiihonen, T., Tarvainen, P. (eds.): Proc. of the 3rd European
Conference on Numerical Mathematics and Advanced Applications. World Scien-
tific, Singapore New Jersey London Hong Kong (2000) 333–340

4. Semoushin, I., Gorokhov, O.: Computational processes in iterative control design.
In: Sloot, P.M.A., Kenneth Tan, C.J., Dongarra, J.J., Hoekstra, A.G. (eds.): Com-
putational Science – ICCS 2002. Lecture Notes in Computer Science, Vol. 2329.
Springer-Verlag, Berlin Heidelberg New York Barcelona Hong Kong London Milan
Paris Tokyo (2002) 186–195


	Introduction 
	Adaptive Non-linear Filtering Problem 
	Nonlinear Filtering and MATLAB Algorithm Implementation 
	Simulations Results 
	Conclusions 

