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Abstract. This paper offers the comparative analysis of stochastic ap-
proximation methods applied for multi-mode discrete systems identifica-
tion from incomplete noisy observations. The main item discussed here
concerns the rate of convergence of these methods and several aspects
that are considered to affect this property. To corroborate the theoretical
arguments, the experimental results are provided.

1 Introduction

A multi-mode system is understood as a system with changeable coefficients that
compounds the vector parameter . The mode change means that parameter 6
switches, say, from value 67 to value 65, taken from a certain compact set of
available parameters ©. It is assumed that system is stable if and only if the
parameter 8 € ©. The only data can be used is contained into incomplete noisy
observations. So, one can consider two problems to be solved: the problem of
mode switching diagnosis, or so-called fault diagnosis, and the problem of iden-
tification of the new value 65 of parameter §. We insist on the joint performance
of these tasks, using the method of Adaptive Model (AM) and proposing Start-
and-Stop Algorithm (SSA), which we. Every time the fault is detected, the SSA
launches the identification, which adjusts the AM in order to suit the certain
quality requirements. When the identification reaches its goal and demanded
agreement with observation is provided, the SSA stops the process. In our re-
search the requirements, mentioned above, are represented in the form of the
Auxiliary Functional of Quality (AFQ), compared with certain threshold value.
In this article only the identification is discussed, while the description of the
SSA can be found in [7].

The outline of the paper is as follows: Section P| describes the Monitored
System (MS) and Kalman filter. In Section [3 we build the AM and the AFQ.
Section @] shows some identification algorithms and certain experimental results
are contained in Section [5l Finally, Section [6] concludes the paper.
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2 Monitored System

In the frames of this paper we consider MS without control input with an un-
certainty parameter 6, # € IRY. First of all, MS includes the object with state
equation

2(tisr) = Box(t) + Tw(ts), i=0,1,... (1)

with x € R", &g € R™*"™, I' € IR™*? and a noise w(t;) where the random initial
x(tg) at some to has a finite mean Z, and a finite covariance Py > 0.
The other part of MS is a sensor with the equation

A(t) = Ha(t) +o(t), i=1,2,... (2)

where H € R™*", rank(H) < n (incomplete observations) and a noise v(t;).
Both {w(¢;)} and {v(¢;)} are i.i.d. zero mean mutually independent wide-sense
stationary sequences whose covariances are E{w(t,)w(t;)T} = Qp > 0 and
E{v(t;)v(t;))T} = Ry > 0 for all ¢;.

The derivation of unbiased estimate Z(t;) for state x(t;) is considered to be
the main problem of the project. Assume that the value 6y of parameter 0 is
known in advance and for certain period it remains permanent. Hence in this
situation we have fized (fault-free) system mode specified by a nominal value 6,
of 6 and, correspondingly, the steady-state variant of estimation task. This fact
allows us to use the classical approach consisting in the use of Kalman filter to
tackle our main problem under these simplified conditions.

The standard Kalman filter equations are as follows.

Initial values:

P(t5) = Po,  &(tf) = 2o (3)
Step 1: time propagation, ¢ = 0,1, ...

Bt = Do (t]); (4)
15( i+1) = @gP(tj‘)QSg + FQOFT- (5)

Step 2: measurement update, i =1,2,...

K(t;) = P(t7 HT[HP(t; )HT + Rel (6)

B(t) = a(t;) + K(ta)[=(t:) — Ha(t; )]s (7)
P(tf) = P(t;) — K(t)HP(t;). (3)

The MS (@), (@) is assumed to be asymptotically stable in all modes of oper-
ating referred to by the subscript 6, and so all the processes within the system
are wide-sense stationary at every t; as tg — —oo (the main assumption). The
system is designed to hold the main properties in all modes:

* (Pg, I Ql/ I'T) is stabilizable and (®g, H) is completely observable.
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These properties guarantee the existence of the optimal steady-state parameters
for a fized (fault-free) system mode

Bt5,) = Ba(t)),  #(t) = #(t]) + K[2(t,) — Hi(t)

with some fixed Z(t]), constant transition matrix @ and constant gain K de-
signed to be optimal in a steady state (as tg — —00).

Unfortunately, because of uncertainty classical theory can not be used as it
is. In this work we consider two levels of uncertainty.

Case 1: unknown @y, Ry. The estimate of Kalman gain K we denote as D.
Here vector 6 consists of all components of vector K.

Case 2: unknown @y, Ry, Py. As in the previous case, we consider D to be
the estimate of K, and let A to be the estimate of 4. Here vector 6 consists of
all components of vector K and unknown components of matrix @y.

3 Adaptive Model

The problem concerning the derivation of unbias estimate for @y in the AM,
based on the Kalman filter principle, has a solution only for the case of complete
observations [3]. In this work we consider the possibility of evading the strict
limitations and accomplishing the task in the case of incomplete observations.

We build AM for MS and Kalman filter with adjustable parameter 6 con-
sidered to be the estimate of the corresponding MS parameter 6. The property
of estimate unbiasedness can be provided only by the optimal choice of the AM
structure. In the case of noises with zero mean and gaussian distribution it is
the structure of Kalman filter [3]. Let us write the equations of AM:

B(t;) = Az(t),), (9)
2(t;) = Ha(t] ), (10)
r(ty) = 2(t;) — 2(ti) = 2(t;) — HZ(t; ), (11)
2(t7) =2(t;7) + Dr(t;). (12)

where &(t5) is the estimate of x(t;), r(;) is a difference (residual) between the
observation z(t;) (immediately obtained from the sensor) and the observation
estimate 2(t;) (obtained form the AM).

Hence, the AM allows us to derive the unbiased estimate &(¢F) for z(t;). Let
us consider the initial functional of quality to be built on the base of difference
e(t;) = x(t;) — &(t;). As to [4], error-squared functional of quality is the optimal
one for the system with noises having gaussian distribution and zero mean:

Je(t;) = %E[eT(ti)e(ti)], i=0,1,... (13)

While constructing the AFQ, we must take into account the important condition

Bl:
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* the components of argument §* of AFQ minimization must coincide with
corresponding actual values of the entire system parameter (unknown coef-
ficients of @y in the second case of uncertainty) and optimal value of steady-
state filter K.

In practice the value of z(t;) is unknown, and our goal is to be find it, therefore
AFQ should be built up in another way. Usually the difference r(t;) is used for
this purpose. So, we take the AFQ in the following form [2]:

Jo(t;) = =BT (t)e(t;)], i=0,1,... (14)

where ¢(¢;) is the history of residuals r(¢;), transformed in a special manner to
provide

Je(t;) = Je(t;) + const, 1=0,1,... (15)

Without coming into details of (¢;) construction, we find it necessary to mention
here, that the truth of this condition is provided by the known theorem for the
general case [I]. We have fixed the system dimension n = 2 and checked it for
this particular case. While proving the fact the constant mentioned above has
been determined: const = Ry.

As one can see from (IH), the argument of the minimization 6* of J, coincides
with 6*. Hence we will take Je as the AFQ, because it is available for practical
utilization in the numerical algorithms of identification. Under this point of view
the process of identification is evident to turn out the process of optimization
or, in other words, of AFQ minimization. The AM is optimal iff (if and only if)

VgJ=(t:) = " (t:)S(t:) = 0 (16)

where V;J.(t;) € R"", the matrix S(t;) = V4e(t;) is the sensibility matrix [7].
In order to write down ¢ in an explicit form the dimension n is to be fixed,
and below we will operate on 2-order systems in standard observable form:

x(ti“):[f(l) }Jw(ti)—i—[o]w(ti), () = [10]a(t;) +w(t).

(&%

Since QQy, Ry and Py are unknown according to list of uncertainty cases, K and
@y are to be estimated as D and A correspondingly, and almost sure convergence
is to be demanded:

d k 0 1 0 1
il RV R P RS VA

Now let us write down the equation for ¢ for n = 2:

dQT‘(tl‘_l) + T(tl)

)
)
o= 9] w-[]

£(t;) = N(DYH = [ ’"(ti—l)} - [slf
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To obtain the gradient of AFQ (for the first case of uncertainty) the sensibility
matrix should be calculated.

Oe1(t;) Oea(ti) or(ti—1) d or(ti—1) + or(t;)

Spt)" = | 5%, oot orli ) : o o) | ar(e)
€1 7 €2(l4 T\li—1 T (li—1 T(li

dds ddz ds r(ti-1) + do dda adz

For this purpose we differentiate componentwise the equations of AM by D,

taking in account(d), @), @), @), ).

F(tT 0zt : St
ax(ti ) = A fL'( 'L*l)’ a{r(tl) _ [1 0} afl’(tl )’
6d1 8d1 3d1 8d1
dx(tr) _ox(t;) [1 or(t;)
L - L t; D
ad, ad, " |o| ") TP,
T - 6’\ t+ . o -
8x(tz ) —A JJ( 171)’ ar(tz) _ [1 O} al’(tl )’
ad? adQ adZ 8d2
ox(tf) _ox(ty) _[o ar(t;)
L = L ti D .
ady ~ ady, 1] TP
Hence, 62(;5), ag&t;), 62(;3), aag(g)’ agff;), aaggg) are calculated iteratively and
then substituted into the Sp(t;)T matrix. The initial values is necessary to set:
oi(ty) o(ty) 0
adl - 8d2 e

For second case of uncertainty the sensibility model is designed analogically.

4 Stochastic Approximation

In this paper the process of identification is performed by discrete searchless
algorithms, which are also called the methods of stochastic approximation and
represented below in the general recurrent form [5]:

Olt;] = Olt;—1] — Alt;1S” [tj—1]eltj—1]. (17)

The choice of A[t;] affects the rate of convergence greatly. The sufficient condi-
tions of algorithm convergence can be found in [5], [6]. The identification method,
corresponding diagonal form of A[t;] is discussed in[43l The case of equal diag-
onal components \[t;] see below in A1l

4.1 Algorithm 1. Robbins-Monro Algorithm

Let us take A[t;] = 2. By doing so we get the algorithm representing the stochas-
tic analogue of grad]ient method. This method is also called the Robbins-Monro
multidimensional procedure of stochastic approximation. [6], [7]:

N 1

Oltjs1] = é[tj] — )\[tj+1]ST[tj]5[tj}, Altj+1] = m, j=12,... (18)
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4.2 Algorithm 2. Optimal Algorithm

The information about the class of density of distribution the noises belong is
of primary importance, because it helps to make an optimal choice of matrix
A. The algorithm, corresponding to this optimal choice provides the best rate
of convergence of 0[t;] to 6* among all methods [4]. So, for the case of noises
having gaussian distribution with zero mean and unknown covariances least-
squares method (LSM) is the optimal one. To derive LSM the general form of
identification algorithm is to be written down:

Oltj11] = 0[t;] — Aty ] ST [t5)elty], G=1,2,... (19)
where A[t;] € RY*N. In LSM A[t;] is determined by the formula [4]:
Altjn] = Alts] = A 51ST 1S [ Alt;] ST 851) 71 STt 1 ALL). (20)

The equation of approximation written down through the increment is
0ltj 1] = O[t;] + Ad[t;), j=1.2,... (21)
We denote P[t;] = A7'[t;] and from (I9), 20), 1) obtain the LSM:

— set the initial value P[t;] = I;

— calculate P[tj1] = Pt }+S[ TS5

— find AQ[t ;] from the system of linear equations P[t j_H]AG[ = —ST[t;]elt;]
calculate new value of parameter [t 1] = 0[t;] + Af]t;]

The disadvantage of the LSM is that for each step the solution of the system
of linear equations is sought. This operation is quite laborious to perform, so
it is worth to modify the method in order to avoid it. Certainly the newly
obtained algorithm is not optimal in the strict sense, that is why we call it
suboptimal, nevertheless its employment let us to cut down computational costs
in comparison with the LSM. In the later section suboptimal method is discussed
in details.

4.3 Algorithm 3. Suboptimal Algorithm

So-called suboptimal algorithm is developed on the base of optimal one by trans-
forming the ST[t;]S[t;] matrix to diagonal form. Only diagonal elements of ma-
trix product ST [t;]S[t;] remain unchanged, the rest are substituted for zeros:

Oe
ST R
STI;]S1t] ~ : (22)
16)
0 59[’; I

Thus, we have got the suboptimal algorithm:
— set the initial value P[t;] = I;

— calculate diagonal elements of matrix P, pi[tj+1] = pult;] + ||8€[t H ,
i=1,2,....N
) — b STltslelt;] » _
— calculate new value of parameter 6;[t; 1] = 6;[t;] — it t=12...,N
ii|lj
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4.4 Stability Requirements. Jury’s Criteria

From the condition of AM stability p[(I —DH)A] < 1 the characteristic equation
can be obtained [2]:

q(\) = boA* + b A+ by =0 (23)

where by = 1, by = dy — a2, by = a1(d; — 1). The stability condition according
to Jury criteria may be written as [2]:

q(1) >0, (=1)¥q(=1)>0, by > [bx|. (24)
In particular case of 2-order system these conditions transform to the next ones:
14+b14+b2>0, 1lo—by+by>0, 1>]bs. (25)

Hence, we have got an opportunity to determine the stability of a system at
every step of approximation process and to work out the heuristic algorithm,
that would be capable of preventing the AM crash.

The main idea of this method is to keep the parameter é(th) within the set
of stability @. Therefore we have designed the algorithm reasoning from the idea
that identification is to be reinitiated, if the AM became unstable, and launched
with a new stable value.

— calculate 0(t;11);
— check Jury’s criteria (4); if the AM with parameter 6(t;41) is stable, con-
tinue identification; else choose some O,y (tj41) € O.

Now the question is: how to find © and choose Orew during the approximation?
Let us consider this problem for 2-order system and write down the conditions
of stability for d; and ds:

1 1
- — <dy < — +1, (26)
|ai| |a1]
— (al(dl — 1) + 1) +as < ds < (al(dl — 1) + 1) + as. (27)

From (26) it is reasonably to take d; = 1 and ds = ag from (27)). In equivalent
manner we take a; = 0 and ag = dq. Thus, it is guaranteed that 0y, (tj+1) € ©.

5 Experiments

The workability of the proposed ideas is to be approved by the experiments
for 2-order system. The subject of our interest is the rate of convergence. We
consider several aspects to affect this characteristic of identification: the method
used in adaptation process, the case of uncertainty, the level of noise both in
object and sensor (Qy and Ryp), and the stability of entire system (eigenvalues
of matrix @y from the Juri’s criteria point of view).
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In real life the parameter 6 is beyond our reach, while in the experimental
conditions our programm simulates both entire system and AM, and we know
0 (we, but not the AM!) and are able to compare it with 6. Hence we have “a
task with known solution”.

Therefore the scheme of all experiments is as follows (unless otherwise ar-
ranged): during the first thousand of iteration 6 = é, then at ¢ = 1000 we
simulate a fault by changing 6 and at i = 1000 the process of approximation is
launched. In this type of experiments the SSA is not used.

Let us consider the first case of uncertainty and take MS with

0 1
o= [0.30 0.67]'

which eigenvalues (approximately 0.307 and 0.977) are close to stability limits.
The table below contains the convergence time (in iterations) which is averaged
over 100 realization of approximation process. The 15-percent ratio error is taken
(see fig. [, fig. P and fig. [3).

Alg 1. Alg. 2 Alg. 3
Q R dy da dy da dy dso
1 1 14479 4675 5967 599 6698 963
1 | 01| 17766 651 4314 493 4716 1138

Now the MS with eigenvalues which equal approximately -0.358 and 0.558 and,
hence, are far from stability limits:

0 1
o = [0.20 0.20]'

The average convergence time is represented in the table:

Alg 1. Alg. 2 Alg. 3

Q | R dy do dy dso dy do

1 1 | 38376 39822 | 13626 18380 | 11928 21387
1 | 0.1] 16889 8440 4431 8610 5566 8000

In the second case of uncertainty the convergence of A is much slower than the
one of D. To explain this fact series of experiments were made. The parame-
ter D was taken coincided with K and fixed. The AFQ was considered as a
function of a; and as, and level lines, consisting of the points with coordinates
(a1,a2) : Je(a1,a2) = const. These lines look like oblong ellipses. It is typical
for ravine surfaces, so one take f; = 0.2, fo = 0.7 and in the first realization of
approximation process get ai[tmaz] = 0.7 and as[timez] &~ 0.2, in the second —
a1[tmaz] = 0.4 and asltmaz] = 0.5, then — aq[tmaez] =~ 0.8 and as[tmaes] =~ 0.1,
or even a[tmaz] = —1.3 and as[tmaz] = 0.4. The fact that the “correct answer”
is also available, is very important, because for all these realizations the error
€(tmaz) does not vary greatly, as well as J. (a1, az), so & is “good enough”. Taking
these features in account one may note that a1 (tmaz) + @2(tmaz) = 0.9 = const,
as if points (a1 [tmaz], @2[tmaz]) belong to certain line or oblong ellipse.
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Fig. 1. Tracking the parameters k1 and k2 by di (left) and d2 (right) for Algorithm 1
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Fig. 2. Tracking the parameters k1 and k2 by d1 (left) and da (right) for Algorithm 2
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Fig. 3. Tracking the parameters k1 and k2 by di (left) and da (right) for Algorithm 3

5.1 Experimental Conclusions

— The ravine character of AFQ (as a function of a; and as) degrades seriously
the rate of convergence, that does not allow to get correct estimates of @y for
appropriate time. The enlargement of modelling time to 500000 iterations
gives nothing, the millions of iterations are demanded. Nevertheless z(t;) is
estimated good enough to say that the main task — to derive &(t;) — is solved.
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— The series of experiments approves that LSM has got the best rate of con-
vergence. Suboptimal method considered to be the successful improvement
of LSM, because this algorithm provides serious computational shortcut and
insignificantly yields to LSM in the rate of convergence.

— The larger R (in comparison with @) the worse the rate of convergence.

— The rate of convergence is better for MS which eigenvalues are close to the
limit of stability. It is easily seen from ([): such MS possess more strongly
marked inner dynamics than another ones.

6 Conclusions and Future Work

Basing on the results of the experiments we can say that identification methods
can be successfully applied for the solution of the main task, the derivation of
unbiased estimate of . Unfortunately we face the challenge in obtaining correct
estimations in the second case of uncertainty, because of the ravine character of
AFQ. So one of the directions of the future works is to minimize the influence
of this factor to the rate of convergence. Another direction is to study new
identification methods such as ones of Newton’s type and conjugated gradients
algorithm.
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