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Abstract. We consider the numerical solution of initial value problem
for the system of ordinary differential singular perturbed equations. The
integral curve of the problem is constructed using method of continu-
ation with respect to a parameter. We can choose the best parameter
in any step of integration process. It is found that the best argument
of the Cauchy problem is the arc length of the integral curve of the
problem. Transformed to the best argument Cauchy problem has a num-
ber advantages in comparison with the Cauchy problem over the usual
statement [1]. The right - hand side of each transformed equation does
not exceed unit. Moreover, the squared norm of the system right - hand
sides is always equal to unit. Also the suggested transformation reduces
the difficulties that are typical for stiff systems. The efficiency of the
approach is shown on test examples.

1 Introduction

Equations with a small parameter by highest derivative are called singular per-
turbed equations. They form a class of stiff systems convenient for studying the
effectiveness of various numerical methods of integration of stiff systems. New
advances in asymptotic theory [2], theory of difference schemes [3] and simplicity
of qualitative behavior of solution make possible the detailed analyses of such a
system.

We consider the simplest singular perturbed equation of form [4]

ε
dy

dt
= f(y, t), ε > 0. (1)

Consider the case when a degenerated equation, corresponding to the equa-
tion (1),

f(x, t) = 0

has a unique solution x = x(t) and the value of ∂f/∂y is negative in the neigh-
borhood of this solution. The latter condition is essential for stability of the
solution x = x(t).
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The behavior of the equation (1) solution is as follows. If the value of ε is
sufficiently small, the tangents to integral curves are almost parallel to the axis
y, even for a small deviation from the function x(t). And the smaller is value of
ε, the faster the integral curve and solution x(t) of degenerated equation come
close.

The situation can be described in the following way. Two intervals of essen-
tially different behavior take place for any integral curve in the domain consid-
ered. The duration of the first of them is much smaller than that of the second
one. The first interval, where the desired function varies fast, represents the
tending of the integral curve to the curve x(t) and is named the boundary layer.
In the second interval the derivatives are essentially smaller and the integral
curve practically coincide with the curve x(t). The boundary layer always takes
place, except for the case when initial condition is a root of degenerate equation,
i.e., when y0 = x(t0). The smaller is value of parameter ε , the stronger is the
difference of the behavior on the two intervals.

Thus, the solution of the degenerate equation can be used for describing the
solution of differential equation (1) outside of the boundary layer. The difficulties
of numerical solution of the problems considered result from the fact that the
derivative dy/dt increases sharply even for small deviation of initial conditions
from the curve x(t) at any of its point.

2 The Best Continuation Parameter

We consider the solution of the system of nonlinear algebraic or trancendental
equations

F (x) = 0, x ∈ IRn+1, F : IRn+1 → IRn. (2)

The set of solutions of this equation forms the curve in IRn+1.
We will suppose that in equation (2) the unknowns depend of some param-

eter µ

x = x(µ). (3)

Then after differentiating equations (2) with respect to µ we obtain the con-
tinuation equations

J
dx

dµ
= 0, J = J(x) =

∂F

∂x
. (4)

Here J coincides with the augmented Jacobi matrix In the vicinity of the
point x on the curve of the solutions set we introduce parameter µ that is
measured along the axis determined by identify vector α = (α1, . . . , αn+1)T ∈
IRn+1, αα = αiαi = 1. Then in this point

dµ = αdx = αidxi, i = 1, n + 1. (5)

Here the summation with respect to repeating indexes in mentioned limits is
used.
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Choosing the vector α in a different way we can define any continuation
parameter.

The continuation equations (4), (5) we write as



α1 α2 . . . αn+1
F1,1 F1,2 . . . F1,n+1

...
...

. . .
...

Fn,1 Fn,2 . . . Fn,n+1







x1,µ

x2,µ

...
xn+1,µ


 =




1
0
...
0


 . (6)

Here Fi,j = ∂Fi/∂xj , xi,µ = dxi/dµ.
We can prove the following assertion [5], [6]

Theorem 1. For the system of linearized equations (6) to become the best condi-
tioned, it is necessary and sufficient to take the length of the curve of the system
solution set as the continuation parameter of the nonlinear system (2)

3 The Best Argument of the Problem

Consider the Cauchy problem for normal system of ODE’s

dyi

dt
= fi(y1, y2, . . . , yn, t), yi(t0) = yi0, i = 1, n. (7)

Assume that the conditions of existence and the uniqueness theorem are
fulfilled for this problem.

Let an integral the problem to be given by the relations

Fj(y1, . . . , yn, t) = 0, j = 1, n,

Fj(y10, . . . , yn0, t0) = 0,
(8)

that define the integral curve of the problem (7) in (n+1) - dimensional Euclidean
space IRn+1 : {y1, . . . , yn, t}.

The process of finding this curve can be considered as a problem of construct-
ing of the solutions set of the system of equations (8) containing the parameter -
argument t for various values of t. We will use parametric continuation method
to solve this system. Then the problem (7) can be considered as a Cauchy prob-
lem for the continuation equations of the system (8) solution with respect to the
parameter t when the system is reduced to the normal form. Hence we can look
for the best continuation parameter. We will call it the best argument.

We choose the best argument - parameter locally, i.e.,in a small vicinity of
each point of the solution set curve — integral curve of the problem (7).

To solve the problem we assume that yi and t are such functions of some
argument µ that at each point of the integral curve of the problem

dµ = αidyi + αn+1dt, i = 1, n. (9)
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Here αk(k = 1, n + 1) are the components of a unit vector α = (α1, . . . ,
αn+1)T determining the direction along which the argument µ is measured.
Note that the summation with respect to repeated subscript i is assumed in the
expression (9).

Right - hand side of the equality (9) can be regarded as the scalar product of
the vector α and the vector - function differential (dy1, . . . , dyn, dt)T . Assigning
various values to the components of the vector α it is possible to consider all
possible continuation parameters of the problem (8), i.e., all arguments of the
problem (7).

Since the particular form of equation (8) is unknown the change to the ar-
gument µ can be implemented immediately for the problem (7). Dividing the
equality (9) by dµ after that, we obtain

yi,µ − fit,µ = 0,

αiyi,µ + αn+1t,µ = 1 i = 1, n.
(10)

If the vector y = (y1, . . . , yn, t)T ∈ IRn+1 is introduced, the system (10)can
be written in the matrix form

[
A
α

]
y,µ =

[
0
1

]
. (11)

Here the matrix A of size n × (n + 1) has the structure

A = [Ef ],

where E is the unit matrix of n – th order and f = (f1, . . . , fn)T is a vector in
IRn.

The structure of the system (11) is exactly the same as that of the system
(6). Therefore, in according with the Theorem 1, the transition to the normal
form of the system (11) is the best conditioned if and only if α = y,λ, i.e., if the
arc length of the curve of the system (8) solution is chosen as the parameter µ.
This curve is the integral curve of the problem (7). Thus, the system (11) can
be written in the form

yi,λyi,λ + t,2λ = 1

yi,λ − fit,λ = 0,
(12)

which can be solved analytically with respect to derivatives. Since the argument
does not appear explicitly in the equations we take the initial point of the Cauchy
problem (7) as the initial point of λ. Then we arrive to the following form of the
Cauchy problem

dyi
dλ

= fi√
1 + fjfj

yi(0) = yi0

dt
dλ

= 1√
1 + fjfj

t(0) = t0
(13)

i, j = 1, n.
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Below, the argument λ , which provides the best conditioning to the system
of equation (11), will be named as the best argument.

Thus the main result has been proved [7].

Theorem 2. For the Cauchy problem for the normal system of ODE (7) to be
transformed to the best argument it is necessary and sufficient that the arc length
of the solution curve to be chosen as this argument. In this case the problem (7)
is transformed to the problem (13).

The new formulation of the Cauchy problem (13) has a number advantages
in comparison with the Cauchy problem (7). First, the right - hand side of each
equation (13) does not exceed unit. Moreover, the squared norm of the system
right - hand sides is always equal to unit. This removes many of the problems
connected with unlimited growth of the right - hand sides of the system (7),
and allows to integrate differential equations which have the limiting points at
integral curves where the derivatives become infinite. It becomes possible to solve
problem with closed integral curves. Also the suggested transformation reduces
the difficulties that are typical for stiff systems.

Example 1. Let consider some problems. The first problem, taken from [3], is
nonlinear Edsberg’s problem

dy

dt
= −2ky2, y(0) = 10, (14)

It has the exact analytical solution

y(t) =
10

1 + 20kt
.

After λ - transformation the problem (14) takes the form

dy
dλ

= −2ky2√
1 + 4k2y4

, dt
dλ

= 1√
1 + 4k2y4

,

y(0) = 10, t(0) = 0.

This problem was integrated by the program PC1 [8] for k = 103 with accu-
racy 10−10 and initial integration step 0.1 on the interval t ∈ [0, 1]. The execution
time for this problem was two times less then for the problem (14).

Example 2. As another example, we consider numerical solution of Cauchy prob-
lem for Van der Pol’s equation [9]. If a new variable t = x/µ is introduced in
classical Van der Pol’s equation y′′ − µ(1 − y2)y′ + y = 0, the equation take the
form εy′′ − (1 − y2)y′ + y = 0 where ε = 1/µ2. And Cauchy problem can be
formulated in the form

dy1
dt

= y2, ε
dy2
dt

= (1 − y2
1)y2 − y1,

y1(0) = 2, y2(0) = −0.66



To Numerical Solution of Singular Perturbed Equations 505

Here the small parameter is ε = 10−6.
This is a well - known benchmark for estimation the efficiency of computa-

tional programs intended to solve stiff systems.
The program PC1 was used for solving this problem. The accuracy of com-

putations was checked by comparison with ”exact results” obtained in [9] and
it did not exceed the value of 10−3. The problem was solved for t ∈ [0, 0.01]. The
λ - transformation reduced execution time tenfold. The number of calculations
of the right - hand sides was reduced twenty fold. The integration step of the λ
- transformed problem was ten times bigger.

Note, that the program PC1 allows to find the solution of λ - transformed
Van der Pol problem for t ∈ [0, 2] whereas the solution the original problem
terminated at t = 0.03 because of exponent overflow.

Example 3. Consider a initial value problem [3]

εẍ + (1 + t)x = 2.5(1 + t),

x(0) = −1, t ∈ [0, 1], ε = 0.003125.

The explicit scheme of Euler method was used for solving system. The program
Maple V was used for solving this problem.

Abbreviations.
E – for Euler method results
BP – for results of Euler method for system transformed to the best param-

eter
h – step size for t or for λ (in case of the best parameter)
∆ – maximal error on [0, 1]
Table 1 shows results of numerical experiments.

Table 1.

method h ∆ quantity
of steps

BP 0.2 0.127 256
BP 0.05 0.029 294
BP 0.01 0.0053 586
BP 0.005 0.0025 935
E 0.005 ∞ 200
E 0.004 1.950 250
E 0.002 0.584 500
E 0.001 0.239 1000
E 0.0001 0.020 10000
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