
Workflow for Simulators Based on Finite
Element Method

Felix C.G. Santos, Mardoqueu Vieira, and Maria Lencastre

Federal University of Pernambuco - Department of Mechanical Engineering
Rua Acadêmico Hélio Ramos, s/n - Recife - PE 50740-530 - Brazil

fcgs@demec.ufpe.br, {msv,mlpm}@cin.ufpe.br

Abstract. Current workflow systems usually do not provide adequate
support for workflow modeling. Real life work processes can be much
richer in variations and more dynamic than a typical workflow model
is capable of expressing; this means that the users need to be able to
adjust workloads and modify workflow models on the fly [10]. Plexus, a
system for the development of simulators [5,6], is a typical case where
such a difficulty arises. Simulators provide an economical means of un-
derstanding and evaluating the performance of abstract and real-world
systems; their design and implementation is almost as complex as the
systems being simulated, to be efficient they must be adaptable to an
ever-increasing system complexity. The use of workflow technology helps
the development of more flexible and versatile strategies. This paper pro-
poses a workflow management framework, called GIG, for controlling the
simulator workflows in the Plexus context.

1 Introduction

Due to tremendous ongoing activity in the fields of application of the Finite Ele-
ment Method (FEM), there is a need for tools, which could help the development
of simulators with a high reusability degree in both the academic and industrial
worlds. Nowadays simulation systems supporting coupled multi-physics phenom-
ena can be important predictive tools in many industrial activities. However,
the need for suitable numerical tools, which could more appropriately simulate
a large amount of coupled phenomena, and the need for computational environ-
ments, which could help the building of those tools, are still a reality. The Finite
Element Method is a way of implementing a mathematical theory of physical
behavior. Simulations using FEM can become very complex, particularly when
the designer wants to guarantee high levels of abstraction and reuse of the devel-
oped solutions. Those requirements comprise the main strategies in saving the
production costs of high quality simulation software.

This work was done as a part of the activities of Plexus, a project for the
development of a computational environment that helps the design and imple-
mentation of simulation software for coupled phenomena, through flexible and
friendly tools, based on the FEM [3,4,5,6]. By simulator we mean a computa-
tional system aimed at obtaining approximate solutions to systems of coupled

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 555–564, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

556 F.C.G. Santos, M. Vieira, and M. Lencastre

partial differential equations, together with a set of restrictions (differential-
algebraic relationships involving one or more vector fields). In this paper we
analyse the importance of workflows in Plexus.

This work was devised from the experience obtained during the implemen-
tation of several simulators in the FEM context. Researchers of the Mechanical
Engineering Department - UFPE wanted to organize their code in a way that
was easier to adapt to new strategies and also to allow process reuse. So they
designed and implemented the GIG, a generic interface graph, which provides
a process to achieve the mentioned advantages. This workflow has been used
in the development of FEM-systems and a variety of other numerical methods.
Due to their good performance in different case studies we decided to standard-
ize the proposed solution, extending it with some other workflow concepts, and
also evaluating the final result.

The paper motivation can be summarize by the need for: (i) easiness of trans-
lating from the natural language representation of the processes into a computer
representation; (ii) simplicity of use (iii) versatility in the implementation of so-
lution processes in the FEM Domain (iv) reduction of the possibility of errors
in the coupling of processes (v) support of adaptability at run time.

The paper is organized in the following way: section 2 presents some back-
ground about workflows; section 3 details Plexus System; section 4 describes
the proposed workflow. Section 5 presents some conclusions.

2 Workflow Technology

Workflow technology and process support lies at the centre of modern infor-
mation systems architectures [1]. Workflow can be defined as representing the
operational aspect of a work procedure: (i) the structure of tasks and the ap-
plication and humans that perform them; (ii) the order of task invocation; (iii)
task synchronization and the information flow to support the tasks and; (iv) the
tracking and reporting mechanisms that measure and control the tasks.

One of the chief tasks of workflow management system is to separate process
logic from task logic, which is embedded in individual user applications. This
separation allows workflow users to modify one without affecting the other, that
is, the two can be independently modified and the same logic can be reused in
different processes. This promotes software reuse and the integration of hetero-
geneous software applications [1].

The workflow management system is a system that completely defines, man-
ages and executes “workflows” through the execution of software whose order of
execution is driven by a computer representation of the workflow logic. These
management systems automate the process logic, while humans and software ap-
plications perform workflow tasks, implementing the task logic. The majority of
workflow systems share a small set of common features. Some common features
of workflow systems are: (i) flow independence, (ii) domain independence, (iii)
monitoring and history and (iv) manual interventions.

Workflow for Simulators Based on Finite Element Method 557

Considering the levels defined in [12], a Workflow Model system may be char-
acterized as providing support for: (i) Built functions, concerned with defining,
and possibly modeling, the workflow process and its constituent activities; (ii)
Run-time control functions, concerned with managing the workflow processes in
an operational environment and sequencing the various activities to be handled
in each process; (iii) Runtime interactions with human users and IT application
tools for processing the various activity steps.

3 Plexus System

Plexus is a system whose objective is to reduce the complexity and cost involved
in the development and implementation of a simulation system, providing a more
flexible environment with efficient techniques for coupled phenomena simulation.
Despite of being a specific simulation environment, which uses FEM in coupled
phenomena solution, the Plexus system can be used in several types of appli-
cations, allowing at first hand the modelling of different classes of simulators,
considering a set of pre-defined features, for example, a solution scheme involving
time stepping and adaptation.

The Plexus system is divided into 4 subsystems, representing the main pro-
cesses, Fig. 1: (i) Administration/ System Loading, which supports the system
management and the loading of general system data and metadata; (ii) Pre-
processing, where the user inputs problem data, and where dynamic structures
for a simulation are built; (iii) Simulation Processing, where data are processed
to obtain the solution and where the verification occurs; (iv) Post-processing,
where the solution is processed in order to obtain the quantities of interest for
the user and for the needed visualization. This component also deals with system
validation.

The system manages great volumes of data, previously built components,
phenomena, phenomena coupling, algorithms components, definition of persis-
tent data and simulation knowledge reuse. To give support to the high level of
abstraction, flexibility, reusability, and data security available in the Plexus en-
vironment, there is a Database Management System (DBMS), which maintains
the general abstract data related to the context, the algorithms that take part
in different simulation strategies, the simulation problem’s data and also the
simulation’s intermediary data and results.

The Plexus simulation implementation is represented with the use of algo-
rithm skeletons and also with other predefined object-oriented structures, like
computational phenomena, exploring the FEM polymorphism. A computational
phenomenon (for example a computational representation of heat transfer) is de-
scribed by its vector field and weak forms defined in its geometric entity together
with boundary conditions information, which is also implemented as fictitious
phenomena defined on the respective geometric entity of the boundary of its do-
main. It has also Math Methods that implement: Mesh generation, Integration
Rules, Shape Functions, etc [3,4,5,6].

558 F.C.G. Santos, M. Vieira, and M. Lencastre

{

{{

{

{ {

− Input problem’s data
− Definition of break points

for data storage

− Build dynamic data
for preprocessing

2. Pre−processing

− View/query simulation
 results

− ValidationApplication User

4. Post−processing

− Verification system track
− Simulation Execution

Application User

3. Simulation

− Load system data

Administrator
− Input data to build

− Query for previously defined
and implemented strategies

simulator strategiesDesigner

1. Administration / System Loading

DBMS

Fig. 1. Plexus Overview

The FEM-Simulator Skeleton pattern [3] suggests a FEM-Simulator algo-
rithm organization within 4 levels of computational demands: Global Skeleton,
Block Skeletons, Group Skeleton and the Phenomenon level. These levels were
defined due to the high number of repeated (similar) structures and the degree
of reusability of the involved algorithms, see subsection 4.1.

4 FEM Workflow

This section shows that the implementation complexity for coupled phenomena
simulation can be greatly reduced by the use of predefined object oriented struc-
tures, due to FEM polymorphism, and also by the use of workflow and dataflow
management. It proposes a generic framework for Plexus Workflow called GIG.
By frameworks we mean, reusable semi-complete applications that can be spe-
cialized to produce custom applications [9].

GIG already attends, or can be easily adapted to, satisfy the following Plexus
application requirements: easiness of translating from the natural language repre-
sentation of the processes into a computer (executable) representation; simplicity
of use; versatility and flexibility in the implementation of solution processes; re-
duction of the possibility of errors in the coupling of processes; need for support
of adaptability at run time, due to dynamic change of business rules, and need of
dynamic data creation. GIG framework follows the object-oriented style (mod-
eling and programming). For purposes of simplicity of use and easy correctness
verification, the GIG is restricted to be a direct acyclic graph (DAG).

Workflow for Simulators Based on Finite Element Method 559

We assume that the simulator building and assembling will be based on
a variable designer data model, which describes: the initial scenery, algorithm
skeletons and auxiliary numerical methods, phenomena, geometry and so on.
The initial scenery defines the class of problems that the simulator will be able
to tackle in a broad sense. The simulator model is able of considering the use
of many procedures (for instance: Time Loop; Adaptation Iteration; Time Step
Estimation; Solution of Algebraic Systems; Error Estimation; etc), which may
be either present or not, depending on the configuration of the initial scenery.
The implementation of those procedures is done through the algorithm skeletons
and auxiliary numerical methods, which define a procedure within the 4 levels of
computational demand. The other data model abstractions (like computational
phenomena, geometry and so on) are used to describe the problem domain. Some
processes used during the simulation are encapsulated in those data models; in
this work we will not consider such level of detail.

In what follows we will describe the FEM process and the GIG solution.

4.1 FEM Simulator Process

The FEM simulator process can be basically defined by 4 levels of computation
demands (skeletons and methods). From the first level down to the last one,
the procedures get more and more specific, making it possible to separate the
most reusable components. Thus, in each level, the so-called skeletons represent
the activity flows. The skeletons are those parts of that solution process which
can be replaced, making it possible to build different solution strategies. Each
skeleton is able of articulating skeletons in the immediate lower level. When they
are assembled together, they represent the entire solution process.

We detail, in what follows, each level:

– Global Skeleton is the first level of computation and represents the global
algorithm skeleton (the core of the simulator). It is unique for each simulator,
but may be replaceable, producing another simulator. The global algorithm
skeleton articulates the procedures involving all blocks.

– Block Skeletons articulate the Groups of Phenomena in the execution of
tasks demanded by the Global Skeleton. Each block has a set of skeletons
(Block Skeletons), which satisfies the demands from the Global Skeleton by
decoding them into demands for the groups in a previously defined order. A
simulator may have a Block Skeleton changed without needing to change its
Global Skeleton. Nevertheless, a well-designed Block Algorithm Skeleton is
also very reusable and it is not supposed to be substituted even in the case
of very severe changes in the solution algorithm in the level of the Group of
phenomena.

– Group Skeletons articulate the Phenomena in the execution of tasks de-
manded by the Block Skeletons. A Group is provided with a set of Group
Skeletons, which represent very specific procedures and may not be very
reusable. Its purpose is to encapsulate the parts from the solution scheme,
which are specific of the particular solution method being used for a group

560 F.C.G. Santos, M. Vieira, and M. Lencastre

of phenomena. Usually, the more reusable parts of the solution scheme are
best located either in a Block Skeleton or in the Global Skeleton.

– Phenomenon Procedures represent the lowest level of all procedures in the
simulation and are specific of all possible contributions its Phenomenon can
provide to any solution scheme. Starting from the computation of the Global
Skeleton and going through the two other levels of articulation, what remains
to be defined are the contributions of each phenomenon to its Group solu-
tion scheme in a uniform parameterised way. The phenomena classes will be
composed of phenomenon data and a group of numerical methods (Math-
Methods), which are replaceable.

4.2 GIG Solution

The GIG solution propouses starting from an algorithm in natural language.
The procedure is first divided into different algorithm nodes and is organized in
the form of a graph. For the whole algorithm there is a data repository, which
contains the existing data decomposed into different algorithm data classes.

Fig. 2. GIG UML Class Diagram

The GIG framework structure is show in the Fig. 2. As we can realize, the
GIG is composed of the following participants:

DataAlgthmManager its function is to control the whole workflow, managing
its lifecycle. This involves build, reprogramming the application workflow at
runtime.

DomainData represents the whole set of objects, which represent the problem
domain.

GraphNode represents the relationship of the workflow nodes. It is an abstract
class that implements low level operations to visit the graph.

SkeletonGraph it has the root of a workflow graph (skeleton). It manages the
building and the modification of its skeleton. It is responsible to execute the
workflow when requested to.

Workflow for Simulators Based on Finite Element Method 561

AlgthmNode represents the procedure (algorithm) of each workflow node. It
is used as a base class for all algorithm classes of the application. We can
say that it is a white box [9] of the GIG framework.

AlgthmData represents a data type to be used by an AlgthmNode during
workflow execution. It is used as a base class for all algorithms data classes
of the application.

DataAlgthmServer it provides a service that relates AlgthmNode with Al-
gthmData to be used in the building and modification of a workflow graph.

AlgthmConnection represents an algorithm that was not expanded yet, that
is, it references an algorithm that was not incorporated yet to the workflow.
So when it is executed it fetches the algorithm and replaces itself with the
fetched algorithm.

4.3 Workflow Building and Execution

The workflow building and execution process is decribed in the UML sequence
diagram of the Fig. 3. Initially the application send a request to DataAlgthmMan-
ager for building a workflow starting with an identification of the desired driver
component. DataAlgthmManager forwards this request to DataAlgthmServer,
which is the provider of all data and algorithm components. Then, DataAl-
gthmServer creates an object of the class SkeletonGraph and the AlgthmNode
correspondent to the driver component. Next, DataAlgthmServer asks the Skele-
tonGraph to build the graph which in turn asks the Root (the driver) to recur-
sively build the entire graph. The driver, then, asks DataAlgthmServer for its
AlgthmData and its children AlgthmNodes objects. After that it asks each one
of its children AlgthmNodes to build the graph recursively. This process goes on
until all nodes of the workflow are created and assembled.

When it is the time for the application to execute the workflow, it asks
SkeletonGraph to execute it. Then the SkeletonGraph asks its Root (driver)
to execute its algorithm. Next, the root starts executing its procedure, which
involves the execution of its children, and the execution of the entire workflow
unfolds.

4.4 Considerations

Plexus deals with a fixed domain, where high levels of FEM abstraction were
modeled [3,4,5,6,]. For the whole solution, hierarchical levels of processes were
defined, each one with several possibilities of algorithms. Plexus suggests an
architecture of component-based systems, which are significantly more powerful
than that of traditional monolithic integrated solutions because they are easier to
understand, adapt, reuse, customize and extend. Plexus clearly identifies levels
of its architecture where the workflows are to be dynamically defined, built and
controlled.

A Workflow Model system may be characterized as providing support for:
built-functions, run-time control functions and runtime interactions (see section
2). We have separated the run-time control functions in the GIG solution; the
other workflow model functions were just left to Plexus.

562 F.C.G. Santos, M. Vieira, and M. Lencastre

Fig. 3. Workflow building and execution

We can identify many advantages that GIG framework brings to FEM sim-
ulators development, like:

– Simplicity and easier production of algorithms from natural language: Plexus
main expected users are scientists and engineers who develop or use FEM
simulators, and already deal with development of FEM codes in some level.
This users usually program in procedural style. The requirements of simplic-
ity, easier production of algorithms from natural language into a computer
(executable) representation and easier integration with object-oriented appli-
cation, are very relevant. The GIG solution tries to attend this requirement.
It allows an easier organization in a graph level, allowing the distribution of
code in a very flexible way, not compelling a rigid division of code, like in
[1]. The skeletons levels of computation (global skeleton, blocks and groups
skeleton algorithms) are easily implemented in the GIG proposal.

– Restriction of Flow Granularity: An important consequence of the scale dif-
ference between micro workflow and macro workflow concerns users and
activities [1]. Macro workflow targets process designers who typically are
non-technical users; workflow activities involve applications and humans. In
contrast, micro workflow targets people who build applications. At a smaller
scale, micro workflow involves the objects that make up object-oriented ap-
plications. Plexus needs a mixture of small-scale and large-scale workflow,
once its designers are also the programmers. The scales go from largest down
to smallest, when the levels of computation go from the highest down to the

Workflow for Simulators Based on Finite Element Method 563

lowest. GIG allows a flexible representation for a mixture of scales, since it
does not restrict the levels of programming into which the code is defined.

– Solution independence, easiness to change: Due to the frequently changing
of numerical methods (for achieving the more suitable ones), FEM simula-
tors usually suffer adaptations, forcing heavy reprogramming. The solution
independence is important in order to allow the designer to specify the sys-
tem features and strategies, supporting high level of control. The support
for system reconfiguration and versatility is a desired feature. Flow inde-
pendence guarantees more flexibility and reuse. In GIG, it’s easy to change
parts of the GIG graph, maintaining the desired ones intact. Also the levels
of computation allow the tracking of the right process substitution.

– Providing Dynamic Procedural Programming and OO abstractions: Plexus
maintains two paradigms: object oriented abstractions and the procedural
programming (so common in scientific algorithms). The abstractions found
in the FEM domain yield powerful and reusable systems through the estab-
lished concepts of simulator, computational method, algorithm skeletons,
and the defined levels of computation. On the other hand, the workflow
perspective solves problems related to dynamic programming, which is very
important in the production of FEM simulators by Plexus. So workflows
following an object-orientation style can be of great help.

5 Conclusion

In this work we analysed the GIG solution, identifying some aspects of the solu-
tion domain that lead to more simplified workflow systems considering also some
object-oriented aspects. As any workflow, GIG separates process logic (simula-
tor definition and configuration) from task logic (problem strategies), which is
embedded in individual user applications, allowing the two to be independently
modified and the same logic to be reused in different cases.The best of GIG
is that it is an object-oriented framework, which provides a powerful workflow
control with simplicity of specification, programming and use. However, GIG, is
not yet implementing monitoring, history and manual intervention and explicit
parallelism control.

The Plexus system clearly identifies levels of its architecture where the work-
flows are to be dynamically defined, built and controlled. It is worthwhile ob-
serving that the proposed solution makes it easier and flexible the simulator
definition and implementation, with a smaller overhead than other workflow
management systems.

The Plexus system, focus on the development of simulators for chemo-
thermo-mechanical interactions, which occur inside a given system and between
such a system and its surrounding environment. However, the proposed GIG
framework can be applied to the development of general-purpose systems, de-
spite of being adequate for the underlining Plexus context.

564 F.C.G. Santos, M. Vieira, and M. Lencastre

References

1. Dragos-Anton Manolescu, Micro-Workflow: A Workflow Architecture Supporting
Compositional Object-Oriented Software Development, Ph.D, Department of Com-
puter Science University of Illinois at Urbana-Champaign, 2001.

2. Fiorini S. Leite J.P. and Lucena C.J., Process Reuse Architecture, CaiSE 2001,
LNCS pp 284–298.

3. Lencastre M., Santos F. Rodrigues I., FEM Simulator based on Skeletons for Cou-
pled Phenomena (FEM – Simulator Skeleton), The Second Latin American Con-
ference on Pattern Languages of Programming SugarloafPLoP’2002 Conference,
Itaipava, Rio Janeiro, Brasil.

4. Lencastre M., Santos F., Rodrigues I. Data and Process management in a FEM
Simulation Environment for Coupled Multi-Physics Phenomena, Fifth Interna-
tional Symposium On Computer Methods In Biomechanics And Biomedical En-
geneering; 2001 Rome- Italy.

5. Lencastre M., Santos F., FEM Simulation Environment for Coupled Multi-physics
Phenomena. Simulation and Planning In High Autonomy Systems – AIS2002;
Theme: Towards Component-Based Modeling and Simulation. Lisboa, Portugal,
2002.

6. Santos F., Lencastre M., Araújo J., A Process Model for FEM Simulation Support
Development, SCSC 2002 – Summer Computer Simulation Conference, US Grant
Hotel- San Diego, California, 2002.

7. Yoder J., Balaguer F. and Johnson R., Architecture and Design of Adaptative
Object-Models, 2000.

8. Roberts D., Johnson R., Evolving Frameworks: A Pattern Language for Developing
Object Oriented Frameworks, University of Illions.

9. Fayad M., Douglas S., Johnson R., Building Application Frameworks: Object- Ori-
ented Foundations of Framework Design, Wiley Computer Publishing, 1999.

10. Kwan M.M., Balasubramanian P.R., Dynamic Workflow Management: A Frame-
work for Modeling Workflows,System Sciences, 1997, Proceedings of the Thirtieth
Hwaii International Conference on , Volume: 4 , 7–10 Jan 1997 Page(s): 367–376
vol.4.

11. Workflow Management Coalition: The Workflow Reference Model, Workflow Man-
agement Coalition Specification, – Winchester, Hampshire – UK, 95.

	Introduction
	Workflow Technology
	Plexus System
	FEM Workflow
	FEM Simulator Process
	GIG Solution
	Workflow Building and Execution
	Considerations

	Conclusion

