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Abstract. We consider the reliable transmission of messages via quickest paths
in a network with bandwidth, delay and reliability parameters specified for each
link. For a message of size σ , we present algorithms to compute all-pairs quick-
est most-reliable and most-reliable quickest paths each with time complexity
O(n2m), where n and m are the number of nodes and links of the network, re-
spectively.

1   Introduction

We consider a computer network represented by a graph G = (V, E) with n nodes and
m links. Each link l = (i, j)∈E has a bandwidth B(l) ≥ 0, delay D(l) ≥ 0, and reliability
0 ≤ )(lπ ≤ 1, which is the probability of l being fault free. A message ofσ units can be

sent along the link l in T(l) =σ /B(l) + D(l) time with reliability )(lπ as in [13].

Consider a path P from i0 to ik given by (i0, i1), (i1, i2), …, (ik-1, ik), where (ij, ij+1) ∈E,
for j = 0, 1, …(k – 1), and i0, i1, …, ik are distinct. The delay of path P is D(P)
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iiπ . The end-to-end delay of P in transmitting a message of

sizeσ is T(P) =σ / B(P) + D(P) with reliability R(P).
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B(.) D(.) R(.) T(.)

P1 : {v2, v2, v3, v4, v5} B(P1) = 5 D(P1) = 4 R(P1)= 0.00027 T(P1) =σ /5 + 4

P2 : {v1, v2, v4, v5} B(P2) = 10 D(P2) = 8 R(P2) = 0.027 T(P2) =σ /10 + 8

P3 : {v1, v6, v5} B(P3) = 20 D(P3)= 10 R(P3) = 0.015 T(P3)= σ /20 + 10

Fig. 1. Example network

The path P from s to d is the most-reliable (MR) if R(P) is the maximum among all
paths from s to d. The path P is the quickest for message sizeσ if T(P) is the mini-
mum among all paths from s to d. The path P is the quickest most-reliable (QMR) if it
is the quickest forσ among all MR paths from s to d. The P is the most-reliable quick-
est (MRQ) if it has highest reliability among all quickest paths from s to d forσ . For
the network in Figure 1, for s = v1 and d = v5, P2 is the MR path with R(P2) = 0.027,
and it is also the QMR path for anyσ . Forσ < 40, P1 is the quickest path, and forσ >
40, and P3 is the quickest path. All P1, P2, and P3 are quickest paths forσ = 40. Then P1

is the MRQ path forσ < 40, and P3 is the MRQ path forσ > 40, and P2 is the MRQ
path forσ = 40.

The classical quickest path problem was extensively studied [7, 4, 12, 2], and has
received increased attention recently due to its applicability to computer networks [9,
13]. In real-life computer networks, communication links may fail, and hence it is
important to determine quickest paths that are reliable as well. Recently, such reliabil-
ity aspects have been studied by Xue [13], and O(rm + rn log n) time algorithms were
proposed for computing both QMR and MRQ paths from s to d for message sizeσ ,
where r is the number of distinct link bandwidths.

In this paper, we consider the all-pairs versions of computing QMR and MRQ paths
considered in Xue [13]. The all-pairs version of the classical quickest path problem
was solved in [3, 6] with time complexity of O(n2m). By applying the algorithms of
Xue [13] for each s∈V, we can compute QMR and MRQ paths between all pairs s and
d with time complexity O(nrm + rn2 log n); since r ≤ m, we have the complexity O(nm2

+ n2m log n). In this paper, we present O(n2m) time algorithms to compute all-pairs
QMR and MRQ paths, which match the best-known complexity for the all-pairs clas-
sical quickest path problem.
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2   All-Pairs Quickest Most Reliable Paths

For any pair u, v∈V, a MR path is computed using the All-pairs Shortest Path (ASP)

algorithm [1] with weight ’π (l) = log(1 / π (l)), for l∈E, where the weight of a path is
the sum of the weights of its links. We compute [ Vjiji ∈Φ ,],[ ] = [ ],[ jiΦ ] using ASP,

where ],[ vuΦ is the shortest weight of a path from i to j under the weight ’π . There

can be more than one MR paths from which the QMR path may be chosen. To account
for such MR paths, we identify each link (i, j) that is on some most MR path from u to

v, by checking the condition ],[ iuΦ + ’π (l) + ],[ vjΦ = ],[ vuΦ at an appropriate step in

our algorithm.
The rest of the algorithm is a modification of the All-pairs Quickest Path (AQP) al-

gorithm of Chen and Hung [3] which ensures that only edges on appropriate MR paths
are considered in computing QMR paths. We use three arrays, denoted by d[u, v], b[u,
v] and t[u, v] for u, v∈V, to represent the delay, bandwidth and end-to-end delay of
the quickest path from u to v, respectively, at any iteration of the algorithm. The edges
of G are considered in the non-increasing order in lines 5-13; top operation in line 6
returns the top element and removes it from the heap. In each iteration, the chosen
edge (i, j) is checked if it is on some MR path from u to v in line 8. If yes, the algo-
rithm identical to that in [3]: it checks if the path via (i, j) is quicker than the quickest
path computed so far, and replaces that latter if so. If not, this edge (i, j) is not consid-
ered further.

Algorithm AQMR (G, D, B,π ,σ )

1. compute [ ],[ jiΦ ] using ASP (G, ’π )

2. for pair u, v∈V do
3.     d[u, v] = ∞ ; b[u, v] = 0; t[u, v] = ∞ ;
4. arc_heap ← top-heavy heap of all l∈E according to bandwidth;
5. while arc_heap ≠ ∅ do
6.     (i, j) = top(arc_heap); let l = (i, j);
7.     for each pair u, v∈V do

8.         if ( ],[ iuΦ + ’π (l) + ],[ vjΦ = ],[ vuΦ ) then

9.             D1 = d[u, i] + D(l) + d[j, v]
10.             if D1 < d[u, v] then
11.                 d[u, v] = D1

12.                 ifσ /B(l) + d[u, v] < t[u, v] then
13.                     b[u, v] = B(l); t[u, v] =σ /B(l) + D1;

Lines 2-11 of algorithm AQMR are identical to that of [3] except for the condition
in line 8 which ensures that only the edges on MR paths are considered in computing
the quickest paths, and hence its correctness directly follows. All pairs shortest path
algorithm has the complexity of O(n3) in line 1. The complexity of lines 2-13 is
O(n2m). Thus, the all-pairs QMR paths for message sizeσ are computed by algorithm
AQRM with time complexity O(n2m) and space complexity O(n2).
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3   All-Pairs Most-Reliable Quickest Paths

To compute an MRQ path from s to d, we have to “account” for all quickest paths
from s to d. Note that AQP returns a quickest path from s to d, which may not be a
MRQ path, and hence a simple condition similar to line 8 of AQMR does not work. In
particular, it is not sufficient to check if an edge l is on a quickest path P1 with band-
width B(l); in fact, l can be on a quickest path with any b = B(P1) ≤ B(l). In our algo-
rithm, we compute the largest of such b and place l at an appropriate step in the com-
putation, which is an iterative process similar to AQMR. Let t[u, v] represent the end-
to-end delay of quickest path from u to v forσ .

Fig. 2. (a), (b), and (c) represent paths P1, P2, and P3 for the network in Fig.1. (d) shows the plot
representation of P1, P2, and P3.

Let b1 < b2 < … < br be the distinct values of B(l), l∈E. Let Gb be the subnetwork
with all edges of G whose bandwidth is greater than or equal to b. To compute MRQ
paths, we first compute all-pairs quickest paths in G using AQP with the following
enhancement. For each bandwidth value bk and pair u, v∈V, we store a matrix
[ ],[ vud

kb ] where ],[ vud
kb is the delay of the shortest path from u to v in 

kbG . These

matrices can be computed during the execution of AQP. Let ),,( σvuΘ be the set of

bandwidths of all quickest paths from u to v for givenσ . As shown in Fig.2, we
have )20,,( 51 vvΘ = {5}, )40,,( 51 vvΘ = {5, 10, 20}, and )60,,( 51 vvΘ = {20} for the

example of Fig.1. The following is an important property of ),,( σvuΘ , which is due to

the fact that a quickest path from u to v is a shortest path in
ibG for some bi.

Lemma 3.1 ),,( σvuΘ ≠ ∅ if and only if there is a shortest path from u to v in Gb for

some b∈ ),,( σvuΘ .
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In AMRQ, we organize the sets ),,( σvuΘ ’s as stacks with bandwidths decreasing

top to bottom. We use AQP [3] to compute [t[u, v]] and [db[u, v]] in line 1. In line 2,
we compute all ),,( σvuΘ ’s for each pair u, v∈V with time complexity O(m): for each

bk we simply check for the condition t[u, v] =σ / bk + 
kBd [u, v]. There are O(n2m)

iterations in the rest of the algorithm, where edges are considered in decreasing order
of bandwidth with which they participate in quickest paths (if at all). In each iteration,
we consider the current link bandwidth B(l), and pair u, v∈V. Lines 9-10 compute the
maximum bandwidth with which the edge l is used in a quickest path from u to v. The
reliability of new path via l from u to v is then computed and the existing value is
replaced appropriately in lines 11-12. Consider that as a result of while loop in lines 9-
10, the retrieved bandwidth b[u, v] is strictly smaller than B(l) if b[u, v] corresponds to link
l1, no more pop operations on ),,( σvuΘ will performed until all edges with bandwidths

in the range [B(l1), B(l)] have been retrieved from the heap and processed. For each
pair u, v∈V, this algorithm can be viewed in terms of alternating subsequences of top
operations on arc_heap and pop operations on stack ),,( σvuΘ with no backtracking

involved. In actual execution, however, all these subsequences corresponding to vari-
ous u – v pairs are intermingled among themselves as well as subsequences of top
operations.

Algorithm AMRQ (G, D, B,π ,σ )
1. compute [t[u, v]] and [db[u, v]] using AQP (G, B, D,σ )
2. compute stack ),,( σvuΘ for each pair u, v∈V

3. for each pair u, v∈V do
4.     b[u, v] = top( ),,( σvuΘ );

5. arc_heap = top_heavy heap of all edges of G according to the bandwidth
6. while not arc_heap ≠ ∅ do
7.     (i, j) = top(arc_heap); let l = (i, j);
8.     for each pair u, v∈V do
9.         while (B(l) < b[u, v]) and ( ),,( σvuΘ ≠ ∅ ) do

10.             b[u, v] = pop( ),,( σvuΘ );

11.         if (B(l) ≥ b[u, v]) and ( ],[
],[

vud
vub = ],[

],[
iud

vub + D(i, j) + ],[
],[

vjd
vub ) then

12.             ],[ vuΦ ← min{ ],[ vuΦ , ],[ iuΦ + ’π (i, j) + ],[ vjΦ };

Consider the correctness of the algorithm. If an edge l is on a quickest path from u
to v, there is a corresponding b∈ ),,( σvuΘ by lemma 3.1. Consider a MRQ path P1

and let 
1pl be the link with the lowest bandwidth, which implies B(

1pl )∈ ),,( σvuΘ .

All other links l of P1 are retrieved in line 7 before 
1pl : each B(l) is checked

with ’b ≥ b or higher in line 11, and hence is accounted for in computing the shortest
paths in Gb. Hence, by end of iteration in which 

1pl is examined, the reliability of P1 is
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computed in line 12, since all its edges would have satisfied the condition in line 11
and hence accounted for in the reliability computation.

The complexity of lines 1 and 2 is O(n2m). For each pair u, v, each edge is consid-
ered at most one time in lines 7 – 12, and hence the time and space complexities of
AMRQ are both O(n2m).

4   Conclusion

We presented algorithms to compute most-reliable quickest and quickest most-reliable
paths between all pairs of nodes in a network. These algorithms match the best known
computational complexity for the classical all-pairs quickest path problem, namely
without the reliability considerations. It would be interesting to obtain all-pairs algo-
rithms for other variations of the quickest path problem such as general bandwidth
constraints [11], random queuing errors [8], dynamic bandwidth constraints [5] and
various other routing mechanisms [10]. Another future direction is the on-line com-
putation of quickest paths so that path’s quality can be traded-off for computational
speed.
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