Specification and Automated Recognition of
Algorithmic Concepts with ALCOR *

Beniamino Di Martino' and Anna Bonifacio®

'Dipartimento di Ingegneria dell’ Informazione -
Second University of Naples - Italy
2 Covansys s.p.a - Rome - Italy
beniamino.dimartino@unina.it

Abstract. Techniques for automatic program recognition, at the algo-
rithmic level, could be of high interest for the area of Software Mainte-
nance, in particular for knowledge based reengineering, because the selec-
tion of suitable restructuring strategies is mainly driven by algorithmic
features of the code. In this paper a formalism for the specification of
algorithmic concepts, based on an automated hierarchical concept pars-
ing recognition technique, is presented. Based on this technique is the
design and development of ALCOR, a production rule based system for
automatic recognition of algorithmic concepts within programs, aimed
at support of knowledge based reengineering for high performance.

1 Introduction

The automatization of program comprehension techniques, even if limited to
the algorithmic level, could be of high interest for the area of Software Main-
tenance, in particular for knowledge based reengineering to improve program
performance.

We have designed and developed an original technique for automatic algo-
rithmic concept recognition, based on production rule-based hierarchical concept
parsing.

Based on this technique is the development of ALCOR [2], a tool for auto-
matic recognition of algorithmic concepts within programs, aimed at support of
program restructuring and porting for high performance [3]. First order logic
programming, and Prolog in particular, has been utilized to perform the hier-
archical concept parsing, thus taking advantage of Prolog’s deductive inference
rule engine. The input code is C, and the recognition of algorithmic concept
instances within it is performed without any supervision from the user. The
code recognition is nevertheless partial (only the concept instances specified in

* This work has been supported by the CNR - Consiglio Nazionale delle Ricerche,
Italy (Agenzia 2000 Project ALCOR - n. CNRG00A41A), and by the Campania Reg.
government (Projects “L41/96 Smart ISDN” and “Regional Competence Center on
Information and Communication Technologies”).

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 748-757, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Specification and Automated Recognition 749

the Alcor’s inferential engine are recognized) and limited to the functional (al-
gorithmic) level: concepts related to the application domain level of the source
code aren’t taken into consideration, in order to design a completely automatic
procedure. These limitations are nevertheless irrelevant, due to the purpose of
recognition: to drive parallelization strategies, the algorithmic level comprehen-
sion is sufficient, and it can be applied on partial portions of the code.

In this paper we describe a formalism for the specification of algorithmic
concepts recognition, based on higher order attributed grammars.

The paper proceeds as follows: an overview of the developed technique is
presented in sec. 2; in sec. 3 we describe a formalism for the specification of
algorithmic concepts recognition, based on higher order attributed grammars.
Sec. 4 provides with examples of specification of algorithmic concepts.

2 The Recognition Strategy

The recognition strategy is based on hierarchical parsing of algorithmic con-
cepts. The recognition process is represented as a hierarchical abstraction pro-
cess, starting from an intermediate representation of the code at the structural
level in which base concepts are recognized; these become components of struc-
tured concepts in a recursive way. Such a hierarchical abstraction process can
be modeled as a hierarchical parsing, driven by concept recognition rules, which
acts on a description of concept instances recognized within the code.

The concept recognition rules are the production rules of the parsing: they
describe the set of characteristics that allow for the identification of an algorith-
mic concept instance within the code.

The characteristics identifying an algorithmic concept can be informally de-
fined as the way some abstract entities (the subconcepts), which represents a set
of statements and variables linked by a functionality, are related and organized
within a specific abstract control structure. By “abstract control structure” we
mean structural relationships, such as control flow, data flow, control and data
dependence, and calling relationships.

More specifically, each recognition rule specifies the related concept in a re-
cursive way, by means of:

— a compositional hierarchy, recursively specified through the set of subcon-
cepts directly composing the concept, and their compositional hierarchies;

— a set of conditions and constraints, to be fulfilled by the composing sub-
concepts, and relationships among them (which could involve subconcepts
at different levels in the compositional hierarchy, thus not only the direct
subconcepts).

In section 3 a formalism for the specification of the recognition rules is pre-
sented.

The properties and relationships which characterize the composing concepts
have been chosen in such a way to privilege the structural characteristics respect
to the syntactic ones. We have decided to give the data and control dependence

750 B. Di Martino and A. Bonifacio

relationships a peculiar role: they become the characteristics that specify the
abstract control structure among concepts. For this purpose, they undergo an
abstraction process during recognition, such as the concept abstraction process.
This abstraction has been represented by the introduction of the notions of ab-
stract control and data dependence among concept instances. The set of abstract
data and control dependence relationships is produced within the context of
the concept parsing process, and is explicitly represented within the program
representation at the algorithmic level.

The direction of the concept parsing has been chosen to be top-down (descen-
dent parsing). This choice is motivated by the particular task of the recognition
facilities in the framework of the parallelization process. Since we are interested
in finding instances of parallelizable algorithmic patterns in the code, an algo-
rithmic recognition of the whole code is not mandatory: thus a top-down parsing
(demand-driven), which leads to partial code recognition, is suitable, and allows
for a much deeper pruning of the search space associated with the hierarchical
parsing than the bottom-up approach.

The base concepts, starting points of the hierarchical abstraction process,
are chosen among the elements of the intermediate code representation at the
structural level. The code representation at the structural level (basic represen-
tation) is thus a key feature that affects the effectiveness and generality of the
recognition procedure; we have chosen the Program Dependence Graph [4] repre-
sentation, slightly augmented with syntactical information (e.g. tree-like struc-
tures representing expressions for each statement node) and control and data
dependence information (edges augmented e.g. with control branch and data
dependence level, type, dependence variable). Two main features make this rep-
resentation suitable for our approach: (1) the structural information (data and
control dependence), on which the recognition process relies, is explicitly rep-
resented; (2) it’s an inherently delocalized code representation, and this plays
an important role in solving the problem of concept delocalization. An overall
Abstract Program Representation is generated during the recognition process.
It has the structure of a Hierarchical PDG (HPDG), reflecting the hierarchical
strategy of the recognition process.

3 A Formalism for the Specification of Algorithmic
Concepts Recognition

Attributed grammars [8] have been selected as formalism for the specification
of the recognition rules of the hierarchical concept parsing. Its effectiveness to
specify relationships among structured informations, well exploited for the speci-
fication and structural analysis of programming languages, makes this formalism
suitable for the program analysis at the algorithmic level too.

CG = (G, A, R, C) is thus our Concept Grammar, with G = (T, N, P, Z) its
associated context-free grammar.

In the following the several components of the grammar are described, to-
gether with their relationships with the recognition process.

Specification and Automated Recognition 751

The set of terminal symbols of the grammar, T', represents the base concepts.
These are terminals of the hierarchical abstraction process: they are thus ele-
ments of the program representation at the structural level. We give the role of
base concepts to the elements of the structural representation which represent
the executable program statements. The set of grammar terminals is thus, for
Fortran 77: T = {do, assign, if}

The set of nonterminal symbols of the grammar, IV, represents the algorithmic
concepts recognized by the concept parsing.

The set of start symbols of the grammar, Z, represents the subset of algo-
rithmic concepts, named PAPs (Parallelizable Algorithmic Patterns), which are
associated with a specific set of parallelization strategies.

The set of production rules of the grammar, P, specifies the composition of
the concepts represented by the lhs non-terminal symbols, and the relationships
and constraints to be fulfilled by the instances of their subconcepts, represented
by the rhs symbols.

The syntax of a production rule is as follows:

Rule =
rule concept —
composition
{ subconcept }
condition
[local LocalAttributes]
{ Condition }
attribution
{ AttributionRule }

LocalAttributes =
attribute : Type { attribute : Type }

concept € N
subconcept € NUT
attribute € A
Condition € C'
AttributionRule € R

A production rule specifies:

— a set {subconcept} of (terminal and nonterminal) symbols which represent
the set of subconcepts composing the concept represented by the lhs symbol
concept;

— the set {Condition} of the production’s conditions; it represents the set of
relationships and constraints the subconcept instances of the set {subcon-
cept} have to fulfill in order for an instance of concept to be recognized;

— the set {AttributionRule} of the production’s attribution rules. These assign
values to the attributes of the recognized concept, utilizing the values of at-

752 B. Di Martino and A. Bonifacio

tributes of the composing subconcepts (in this way we restrict the attributes
of the grammar C'G to be only synthesized ones).

Optionally, local attributes can be defined (the definition is marked by the key-
word local).

The set of grammar conditions, C', is composed of predicates, or predicative
functions, defined as follows:

Conditions =
| Condition & Conditions
| Condition ’|” Conditions
| - Conditions
| if Conditions then Conditions [else Conditions |

Condition =
| [(] Conditions [)]
| condition ([ParameterList |)
| [{’] ParameterList ['}’] := condition ([ParameterList |)
| attribute = attribute
| attribute # attribute
| attribute € attributelist
| VvV Condition Condition
| 3 Condition s.t. Condition

ParameterList =
Parameters { , Parameters }

Parameters =
| [attribute : | Type
| ([attribute :] Type °’|” [attribute :] Type)

Conditions have grammar attributes, of different types, as parameters; in
the case of predicative functions, they return a set of values (to be assigned to
attributes of the corresponding type) if the condition on the input parameters is
verified, and an undefined value otherwise. The conditions present in a grammar
rule represent the constraints the corresponding concept has to fulfill, or the
relationships among its composing subconcepts. The conditions represent con-
straints imposed to the parsing process, because if one of them is not satisfied,
the current application of the corresponding rule fails, and the corresponding
concept instance is not recognized. Conditions can be composed, by means of
the usual logical connectives, the universal and existential quantifiers can be uti-
lized, and alternatives can be tested by means of the conditional connective if.
Conditions can applied to local attributes, and to attributes of symbols at the
right hand side of the production. This constraint, together with the presence
of synthesized attributes only, ensures that all the attributes which could be
needed by a condition assume defined values when the rule is fired. This allows
for the conditions’ verification to be performed during the parsing process.

Specification and Automated Recognition 753

The set of grammar attributes, A, is composed of the attributes associated
to the grammar symbols. As already mentioned, the attributes associated to
a concept add an auxiliary semantical information to the semantical meaning
represented by the concept; in addition, they permit to verify constraints and
properties of the concept, and relationships among concepts; finally, they char-
acterize the particular instances of the concept: two occurrences of a grammar
symbol, presenting different values for at least one attribute, represent two dif-
ferent instances of the same concept.

4 Examples of Algorithmic Concepts’ Specifications

We now highlight the flexibility and expressivity power of the formalism for
the specification of the hierarchy, the constraints and the relationships among
concepts through an example.

The algorithmic concept we consider is the matriz-matriz product, and the
concept vector-matriz product, which is the subconcept of the previous. Due to
space restrictions, we leave unexplained, even though we mention, all the other
hierarchically composing subconcepts. The generic vector-matriz product opera-
tion is usually defined (in a form which includes application to multidimensional
arrays) as:

VM PR — [...’Dphk)= ---,Ze(A(~-~,lg,---)><B(~~~,Iz?,---,m,~~~)),---

(1)
where DP" is the generic dot product operation, where e(z) is a linear
expression with respect to x, whose coefficient is invariant with respect to the ¢
index of the sum. The vector-matrix operation involves the h-th dimension od
the A array (the “vector”) and the k-th and [-th dimensions of the array B (the
“matrix”). The result is a monodimensional array, which can be assigned to a
column of a multidimensional array.
The recognition rule for the matrix vector product is presented in figure 1,
with related attributes presented in table 1. We illustrate the 1 in the following.
Its main component is the dot product concept. The other components are
two instances of the scan concept. The first scan instance (scan[1]) scans a
dimension of the array, which records the result: this is specified by verifying
that the scan statement is an assignment (to elements of the scanned array), sink
of a dependence chain whose source is the assignment statement which records
the result of the dot product. The second scan instance (scan[2]) scans the I-th
dimension (cfr. eq: 1) of one of the arrays involved in the dot product. It has to
be of course different from the dimension (k-th in 1) involved in the dot product.
The two scans must share their count loop subconcepts, in order to scan the
two dimensions of the two arrays at the same time. These dimensions have to be
completely scanned, in sequence (for both the scan concepts, the range attribute

754 B. Di Martino and A. Bonifacio

Table 1. Attributes of the matrix_vector_product concept.

Attributes kind

in : instance

hier : hierarchy
struct of

ident : identifyer
inst : expression
vector struct : dot prod subscr exp : expression
dot prod subscr pos : integer
dot prod index : identifyer
endstruct

struct of
ident : identifyer
inst : expression
dot prod subscr exp : expression
dot prod subscr pos : integer
dot prod index : identifyer
matr vec subscr exp : expression
matr vec subscr pos : integer
matr vec index : identifyer
endstruct

matrix struct

struct of
ident : identifyer
inst : expression
res vector struct : matr vec subscr exp : expression
matr vec subscr pos : integer
matr vec index : identifyer
endstruct

must be whole and step must be sweep). Finally, the dot product instance must
be control dependent from the scan[1] instance.

The matriz-matriz product operation is defined in terms of the matrix-vector
product, as:

Specification and Automated Recognition 755

rule matrix vector product —
composition
scan[1]
dot product
scan|[2]
condition
local countLoopListl, countLoopList2 : [hierarchy]
TERM]1], TERM][2] : instance
control dep(dot product,scan[1],true)
scan[1].hier = -(-,countLoopList1,-(TERM][1],-))
TERM][1] = assign
subexp in exp(scan[l].array scan.array inst, TERM][1].lhsExp)
scan[2].hier = -(-,countLoopList2,-)
countLoopListl = countLoopList2
scan[1].array scan.scan index = scan[2].array scan.scan index
scan[l].range = scan[2].range = whole
scan[l].stride = scan[2].stride = sweep
((scan[2].array scan.array inst = dot product.arrayl struct.inst &
scan[2].array scan.subscr pos # dot product.arrayl struct.subscr pos)
|
(scan[2].array scan.array inst = dot product.array2 struct.inst &
scan[2].array scan.subscr pos # dot product.array?2 struct.subscr pos)
)
TERM]2] = last(dot product.accum struct.stmList)
dep chain(TERM[2],TERM[1])

Fig. 1. Recognition rule of the matrix vector product concept.

where V M P"*! is the matrix-vector product, defined in 1, and DP is the
dot product operation. The operation involves the h-th and s-th dimensions of
the A array, and the k-th and [-th dimensions of the B array. The result is
a bidimensional array, which can be assigned to a page of a multidimensional
array.

The recognition rule for the matrix matrix product is presented in figure
2. We illustrate the 2 in the following.

Its main component is the matrix vector product concept. The other com-
ponents are two instances of the scan concept. The first scan instance (scan[1])
scans a dimension of the array, which records the result of the matrix-vector
product. The second scan instance (scan[2]) scans the s-th dimension (cfr. eq:
2) of the “vector” array of the matrix vector product. It has to be of course
different from the dimension (h-th in 2) involved in the matrix-vector product.
The two scans must share their count loop subconcepts, in order to scan the
two dimensions of the two arrays at the same time. These dimensions have to be
completely scanned, in sequence (for both the scan concepts, the range attribute
must be whole and step must be sweep). Finally, the matrix product instance
must be control dependent from the scan[1] instance.

756 B. Di Martino and A. Bonifacio

rule matrix matrix product —
composition
scan[1]
matrix vector product
scan|[2]
condition
local countLoopListl, countLoopList2 : [hierarchy]
control dep(matrix vector product,scan([1],true)
scan[l].array scan.array inst =
matrix vector product.res vector struct.inst
scan[l].array scan.subscr pos #
matrix vector product.res vector struct.matr vec subscr pos
scan[1].hier = -(-,countLoopList1,)
scan[2].hier = -(-,countLoopList2,-)
countLoopListl = countLoopList2
scan[l].array scan.scan index = scan[2].array scan.scan index
scan[l].range = scan[2].range = whole
scan[l].stride = scan[2].stride = sweep
scan[2].array scan.array inst =
matrix vector product.vector struct.inst
scan(2].array scan.subscr pos #
matrix vector product.vector struct.dot prod subscr pos

Fig. 2. Recognition rule for the matrix matrix product concept.

5 Conclusion

In this paper a production-rule based hierarchical concept parsing recognition
technique, and a formalism for the specification of algorithmic concepts have
been presented.

The main contributions of the work presented can be summarized in the fol-
lowing: — definition of a formalism for the specification of algorithmic concepts,
based on Higher Order Attributed Grammars, suitable for expressing in a flexi-
ble but exact way the compositional hierarchy and relationships among them, at
any level within the hierarchy; — systematic utilization of structural properties
(control, data dependence structure) more than syntactical one, in the definition
and characterization of the algorithmic concepts; the utilization of powerful tech-
niques for the analysis at the structural level (such as array dependences), and
their abstraction; — utilization of symbolic analysis techniques for expressions, to
face the syntactic variation problems not solvable through the algorithmic char-
acterization at the structural level; — development of a technique for automated
hierarchical concept parsing, which implements the mechanism of hierarchical
abstraction defined by the grammar, utilizing the first order logic programming
(Prolog); — representation of the concept instances recognition within the code,
and of their hierarchical structure, through an Abstract Hierarchical Program De-

Specification and Automated Recognition 757

pendence Graph; — focus on algorithms and algorithmic variations within code
developed for scientific computing and High Performance Computing.

References

1.

10.

11.

T.J. Biggerstaff, “The Concept Assignment Problem in Program Understand-
ing”, Procs. IEEE Working Conf. on Reverse Engineering, May 21-23, Baltimore,
Maryland, USA, 1993.

B. Di Martino, “ALCOR - an ALgorithmic COncept Recognition tool to sup-
port High Level Parallel Program Development”, in: J. Fagerholm, J. Haataja,
J. Jrvinen, M. Lyly, P. Rback, V. Savolainen (Eds.): Applied Parallel Computing.
Advanced Scientific Computing, Lecture Notes in Computer Science, n. 2367, pp.
150-159, Springer-Verlag, 2002.

A. Bonifacio, B. Di Martino “Algorithmic Concept Recognition support for Skele-
ton Based Parallel Programming”, Proc. of Int. Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS’03) - Nice (FR), 22-26 /4
2003, Apr. 2003. IEEE CS Press.

. J. Ferrante, K.J. Ottenstein and J.D. Warren, “The Program Dependence Graph

and its use in Optimization”, ACM Trans. Programming Languages and Systems,
9(3), pp. 319-349, June 1987.

J. Grosh and H. Emmelmann, “A Tool Box for Compiler Construction”, Lecture
Notes in Computer Science, Springer - Verlag, n. 477, pp. 106-116, Oct. 1990.
“Puma - A Generator for the Transformation of Attributed Trees”, Compiler Gen-
eration Report n. 26, GMD Karlsruhe, July 1991.

M.T. Harandi and J.Q. Ning, “Knowledge-Based Program Analysis”, IEEE Soft-
ware, pp. 74-81, Jan. 1990.

D. E. Knuth, “Semantics of context-free languages”, Math. Syst. Theory, 2(2) pp.
127-145, 1968.

W. Pugh, “A practical algorithm for Exact Array Dependence Analysis”, Commu-
nications of ACM, 8(35), pp. 102-115, Aug. 1992.

H. Vogt, S. Swiestra and M. Kuiper, “Higher Order Attribute Grammars”, Proc.
of ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pp. 131-145, June 1989.

L.M. Wills, “Automated Program Recognition: a Feasibility Demonstration”, Ar-
tificial Intelligence, 45, 1990.

	Introduction
	The Recognition Strategy
	A Formalism for the Specification of Algorithmic Concepts Recognition
	Examples of Algorithmic Concepts Specifications
	Conclusion
	References

