# The Reachability Problem in a Concave Region: A New Context 

Ali Mohades ${ }^{1}$, Mohammad Ebrahim Shiri ${ }^{1}$, and Mohammadreza Razzazi ${ }^{2}$<br>${ }^{1}$ Faculty of Math. and Computer Sc. AmirKabir University of Tech. 424 Hafez Ave. Tehran, Iran.<br>${ }^{2}$ Faculty of Computer Eng. at AmirKabir University of Tech. 424 Hafez Ave. Tehran, Iran. \{mohades, shiri, razzazi\}@aut.ac.ir


#### Abstract

In this paper we present an algorithm that moves a chain confined in a T-shaped rectilinear region from an initial configuration to a final configuration where the end point of chain reaches a given point $p$. This work is an extension of the our previous results in concave region. In our algorithm links my cross over one another and none of end points of the link chain are fixed. It is shown that the algorithm takes a quadratic time and works when a certain condition is satisfied.


## 1 Introduction

The problem related to the movement of $n$-link chain in two dimensions is considered. The $n$-link chain consists of $n$ links, which are line segments of arbitrary length. The links are joined end-to-end by freely rotating joints. One problem of interest in this area is the reachability problem. In this problem, we decide whether an n-link chain can be moved from one position in a bounded region to another position in order to reach a point in the region.

The movement of an n-link chain was first studied by Hopcroft et al. [1]. An algorithm running in $\mathrm{O}(\mathrm{n})$ time was then given for an n -link chain confined in a circular region of the plane. In [2] they showed that reachability decision problems are NP-hard if the arm constrained by arbitrary polygonal walls. The case when the arm is confined in a square has been discussed in [3].

All the results mentioned above are on the analysis of a given arm in a convex region. In [5] and[6] we extended the reachability problem for some special concave regions. We proved that under some conditions an n-linked chain that is located in one part of a T-shaped concave region could reach all points of the region. The present paper extends our previous works. We show that under some additional conditions we can improve our previous algorithm for a given n-linked chain without considering its placement in the region. The rest of the paper is organized as follows. Section 2 introduces the technical definitions and the problem statement. Section 3 presents our extended algorithm.

## 2 Preliminaries and Previous Work

Assume $\Gamma[0,1, \ldots \mathrm{n}]$ is an n -link chain and $l_{i}$ is the length of the i-th link $L_{i}$ with endpoints $A_{i-1}$ and $A_{i}$ and $|\Gamma|=\max _{1 \leq i \leq n} l_{i}$. We say that an n-link chain $\Gamma$ is bounded by b if $|\Gamma|<\mathrm{b}$, i.e no link has length greater than or equal to b .

A simple motion is the one in which only a few joints are moved simultaneously (at most four angles), or the chain is translated or rotated as a rigid object.

We say that $\Gamma$ is in Rim Normal Form (denoted RNF), if all its joints lie on $\partial S$.
We say that $\Gamma$ is in Ordered Normal Form (denoted ONF), if $\Gamma$ is in RNF and moving from $A_{0}$ toward $A_{n}$ along $\Gamma$ is always either clockwise or counterclockwise.

Consider two line segments $\gamma_{1}$ and $\gamma_{2}$ which intersect at q and $\angle \gamma_{1} \gamma_{2}$ is in $[\pi, 2 \pi]$. Let $\rho$ be the line segment which starts at q and divides the angle $\angle \gamma_{1} \gamma_{2}$ into two angles $\angle \gamma_{1} \rho$ and $\angle \rho \gamma_{2}$ in such a way that $\angle \gamma_{1} \rho$ is in $[\pi / 2, \pi]$. Initial configuration of $\Gamma[1,2,3]$ is defined as follows: $A_{1}$ placed at point p on line segment $\gamma_{1}, A_{2}$ at q and $A_{3}$ at point r on line segment $\gamma_{2}$. By this assumption we can define our movement in a concave region as follows.


Fig. 1. (a): Initial configuration of $\Gamma$, (b): middle-joint-up motion, (c): front-link-forward motion, (d): final configuration of $\Gamma$.

Definition 1. The $\operatorname{mot}\left(A_{1}, A_{2}, A_{3}, \rho\right)$ movement changes the initial configuration of $\Gamma[1,2,3]$ to a final configuration by which $\Gamma$ lies on $\gamma_{2}$. This is done by two consecutive motions (Fig 1):

- Middle-joint-up $\left(A_{1}, A_{2}, A_{3}, \rho\right)$ : moves $A_{2}$ along $\rho$ away from quntil $A_{1}$ reaches q. During the movement $A_{1}$ remains on $\gamma_{1}$.
- Front-link-forward $\left(A_{1}, A_{2}, A_{3}, \rho\right)$ : fixes $A_{1}$ at q then by turning counterclockwise $A_{2} A_{3}$ about $A_{2}$ and turning clockwise $\Gamma$ about $A_{1}$ brings down $A_{3}$ on $\gamma_{2}$ (if not already there). To straighten $\Gamma$, it moves $A_{3}$ along $\gamma_{2}$ away from q.

It is possible to show that the $\operatorname{mot}\left(A_{1}, A_{2}, A_{3}, \rho\right)$ movement can be done in finite number of simple motions. This will be done by showing how each of middle-joint-up motion and front-link-forward motion can be done in finite number of simple motions (see [5] and[6]).

A T-shaped rectilinear $S$ with boundary $\partial S$ can be considered as the union of two rectangles $S_{1}$ and $S_{2}$, with boundaries $\partial S_{1}$ and $\partial S_{2}$, and with sides $s_{1}, s_{2}$ and $s_{3}, s_{4}$ respectively, attached together via the side $\rho$ (Fig 2).

Suppose $p \in S_{2}$ and $\Gamma[0,1, \ldots n]$ confined within $S_{1}$ and $|\Gamma|<\operatorname{Min}\left\{\frac{\sqrt{2}}{2} s_{1},|\rho|\right\}$, then $A_{n}$ can reach the point p using the following algorithm.


Fig. 2. (a):A T-shaped rectilinear, (b):T-shaped rectilinear can be considered as the union of two rectangles with sides $s_{1}, s_{2}$ and $s_{3}, s_{4}$.

Algorithm 1: Move all joints of $\Gamma$ to $\partial S_{1}$, then move link $A_{n-1} A_{n}$ inside $S_{2}$ and bring joints $A_{n-2}, A_{n-3}, \ldots$ inside $S_{2}$ consecutively, using $\operatorname{mot}\left(A_{i-1}, A_{i}, A_{i+1}, \rho\right)$ until p is reached by $A_{n}$.

Sketch of proof: We introduce an algorithm to bring $A_{n}$ to the point p using $\mathrm{O}\left(n^{2}\right)$ simple motions, in the worst case. The algorithm consist of two cases:

$$
d\left(p, v_{1}\right) \geq\left|A_{n-1} A_{n}\right| \text { and } d\left(p, v_{1}\right)<\left|A_{n-1} A_{n}\right|
$$

In case 1 , i.e $d\left(p, v_{1}\right) \geq\left|A_{n-1} A_{n}\right|, A_{n}$ reaches p in three steps. In the first step we place all joints of $\Gamma$ on $\partial S_{1}$ and reach $v_{1}$ by $A_{n}$. It takes $\mathrm{O}(\mathrm{n})$.

In the second step we move link $A_{n-1} A_{n}$ inside $S_{2}$, then define $k_{0}=\min \{\mathrm{k}$ $\left.\mid d\left(p, v_{1}\right) \geq \sum_{i=k+1}^{n} l_{i}\right\}$ and use $\operatorname{mot}\left(A_{i-1}, A_{i}, A_{i+1}, \rho\right), k_{0}<i \leq n-1$ to bring joints $A_{n-2}, A_{n-3}, \ldots, A_{k_{0}}$ inside $S_{2}$ consecutively.

Finally p is reached during $\operatorname{mot}\left(A_{k_{0}-1}, A_{k_{0}}, A_{k_{0}+1}, \rho\right)$. This step takes $\mathrm{O}\left(n^{2}\right)$ in the worst case.

In the third step, if $\mathrm{k}=0$, we bring the whole $\Gamma$ inside $S_{2}$, and then reach the point p (Fig 3-a).

In case 2, i.e $d\left(p, v_{1}\right)<\left|A_{n-1} A_{n}\right|, \mathrm{p}$ is close to $v_{1}$ and the technique of case 1 is not applicable. In this case we present three subcases (Fig 3-b, c and d). It has been shown that each case takes $O(n)$ time to reach p. For more details see [5, 6].


Fig. 3. (a): $d\left(p, v_{1}\right) \geq\left|A_{n-1} A_{n}\right|$, (b): $A_{n-1}$ belongs to the same edge as $v_{1}$, (c): $A_{n}$ and $A_{n-1}$ are in both sides of $\omega,(d)$ : $A_{n}$ and $A_{n-1}$ are in the same side of $\omega$.

## 3 Main Result

The main result is; Moving the chain in a T-shaped region from a given configuration to a final configuration in which $A_{n}$ reaches p.


Fig. 4. $q$ is the farthest distance of $A_{i}$ from $\partial S_{1} \backslash \rho$

Algorithm 2: Assume $\Gamma$ is an $n$-link chain with $|\Gamma|<\min \left\{s_{1}, s_{2}, s_{3}, s_{4}, \frac{|\rho|}{2}\right\}$ confined within $T$-shaped rectilinear $S$ and $p$ a point in $S$, then $p$ is reachable by the end point of $\Gamma$.

We will present a few results that will be used in the explenation of the algorithm.

Assume $A_{i+1} \in S_{2}, \Psi=\partial S_{1} \backslash \rho$,

$$
q_{i}=\min \left\{\text { Farthest distance of } A_{i} \text { from } \psi,\left|A_{i} v_{i}\right|,\left|A_{i} v_{2}\right|\right\}(\text { refer to Fig 4), }
$$

and i is the lowest-indexed joint such that $A_{i} \in S_{1} \backslash \rho$ and $A_{i+1} \in S_{2}$, and assume j is a index such that,

$$
\sum_{m=j+1}^{i} l_{m}<q_{i} \leq \sum_{m=j}^{i} l_{m}
$$

(if $\mathrm{j}=\mathrm{i}$ define $\sum_{m=j}^{i} l_{m}=\sum_{m=j+1}^{i} l_{m}=0$ ).

Lemma 1. Assume $|\Gamma|<\min \left\{s_{1}, s_{2}\right\}, A_{0} \in S_{1}$, i is lowest-indexed joint such that $A_{i} \in S_{1} \backslash \rho$ and $A_{i+1} \in S_{2}$ (at least $\mathrm{i}=0$ ). For some j , as defined before, it is possible to bring $\Gamma[0, . . j]$ to RNF or straighten $\Gamma[0, . . i]$ with $\mathrm{O}(\mathrm{n})$ simple motion.

Proof: Bring the joints of $\Gamma[0, \ldots j]$ one by one to $\partial S_{1}$ in decreasing order of their indices or straighten $\Gamma[0, . . i]$ in two steps. In the first step $A_{j}$ is brought into $\partial S_{1}$ or $\Gamma[0, . . i]$ is straightened. In the second step $\Gamma[0, . . j]$ is brought to $\partial S_{1}$.

Step 1:Let $A_{i-1}$ and $A_{i-2}$ move, turning $A_{i-1}$ about $A_{i}$, keeping $A_{i}$ and $\Gamma[0, \ldots i-$ 3] fixed (if $\mathrm{i}=2$, let $A_{1}$ and $A_{0}$ move, if $\mathrm{i}=1$, let $A_{0}$ move and if $\mathrm{i}=0$ there is nothing to do) so that $A_{i-1}$ gets close to $\partial S_{1}$. One of the following events occurs:
$A_{i-1}$ hits $\partial S_{1}$ (Fig 5-a), $A_{i-2}$ hits $\partial S_{1}$ (Fig 5-b), or the joint angle $A_{i-2}$ straightens (Fig 5-c).


Fig. 5. (a): $A_{i-1}$ hits $\partial S_{1}$, (b): $A_{i-2}$ hits $\partial S_{1}$, (c): angle $A_{i-2}$ straightens.

In cases $A_{i-1}$ or $A_{i-2}$ hits $\partial S_{1}$, move to the step 2, in case the joint angle $A_{i-2}$ straightens begin again with $L_{i-1}$ replaced by line segment $A_{i-1} A_{i-3}$ and $A_{i-2}$ by $A_{i-3}$. Unless for some $k<i-3, A_{k}$ hits $\partial S_{1}$, the angles will be successfully straighten, after which repeatedly apply the same procedure to successively lowerindexed joint angles. If all joint angles become straight, the chain $\Gamma[0, \ldots i-1]$ is simply turned to the direction of the $A_{i}$-to- $A_{i-1}$ until $\Gamma[0, . . i]$ straightens or $A_{0}$ hits $\partial S_{1}$. This step takes $\mathrm{O}(\mathrm{n})$ simple motion at most.

Step 2: Consider for some $k<=j, A_{k}$ lies on $\partial S_{1}$, first bring the joints of $\Gamma[0, \ldots k]$ one by one to $\partial S_{1}$ in decreasing order of their index joints, then bring the joints between $A_{k}$ and $A_{j}\left(\right.$ if $k \neq j$ ) to $\partial S_{1}$ (see [4]). This step also takes $\mathrm{O}(\mathrm{n})$ simple motion.

Lemma 2. Assume $|\Gamma|<\min \left\{s_{1}, s_{2}, s_{3}, s_{4}, \frac{|\rho|}{2}\right\}, A_{0} \in S_{1}$ and i is lowest-indexed joint such that $A_{i} \in S_{1} \backslash \rho$ and $A_{i+1} \in S_{2}$ (at least $\mathrm{i}=0$ ) and assume for some $j<=i$, $\Gamma[j, \ldots i]$ is straight and $A_{j} \in \partial S_{1}$, if $j \neq 0$. It is possible to bring $A_{i+1}$ to $S_{2}$.


Fig. 6. (a): turn $A_{i+1}$ about $A_{i}$, (b): move $A_{i+1}$ along $\lambda$ toward the initial place of $A_{i}$, (c): $A_{i}$ is simply rotated about $A_{0}$

Proof: W.l.g. assume $v_{1}$ is farthest point of $\rho$ from p . There are tree cases to consider as follows:

In case $j=i$, i.e. $A_{i} \in \partial S_{1}$, turn $A_{i+1}$ about $A_{i}$ until $A_{i+1}$ exit $S_{2}$ and enter $S_{1}$. By assumption $\left(|\Gamma|<\frac{|\rho|}{2}\right)$ during rotation $A_{i+1}$ does not hit $\partial S_{2}$ (Fig 6-a).

In case $j<i$, i.e. $A_{i} \notin \partial S_{1}$, let $\lambda$ be the straight line trough $A_{i} A_{i+1}$. Move $A_{i+1}$ along $\lambda$ toward the initial place of $A_{i}$ letting joint $A_{i}$ move, keeping the joints between $A_{i}$ and $A_{j}$ straight, and fixing $A_{j}$. If $A_{i+1}$ exits $S_{2}$, we are done. If $A_{i}$ hits $\partial S_{1}$, do the same as the case $\mathrm{j}=\mathrm{i}$. (Fig 6-b).

In case $\mathrm{j}=0, \Gamma[0, \ldots i]$ is straight and $A_{0} \notin \partial S_{1}, A_{i}$ is simply rotated about $A_{0}$. All these cases takes a finite number of simple motion.

The algorithm consists of four consecutive steps as follows.
Step 1: Fix $A_{i}$ and depending on distance of $A_{i}$ from $\Psi$, for some j (as defined), bring $\Gamma[0, \ldots j]$ to $\partial S_{1}$ or straighten $\Gamma[0, \ldots i]$, using lemma 1 .

Step 2: Move all chains of $\Gamma$ to $S_{1}$ by repeatedly applying step. 1 and lemma 2 successively.

Step 3: Move $\Gamma$ to ONF in $S_{1}$ using Kantabutra Algorithm (see [4]).
Step 4: Move chain to a configuration in which $A_{n}$ reaches p using algorithm 1. All these steps take $\mathrm{O}\left(n^{2}\right)$ simple motions together at most.

## References

1. J. Hopcroft, D. Joseph, and S. Whitesides. Movement problems for 2-dimensional linkages, SIAM J. Compt., 13: pp. 610-629, 1984.
2. J. Hopcroft, D. Joseph, and S. Whitesides. On the movement of robot arms in 2dimensional bounded regions, SIAM J. Compt., 14: pp. 315-333, 1985.
3. V. Kantabutra. Motions of a short-linked robot arm in a square. Discrete and Compt. Geom., 7:pp. 69-76, 1992.
4. V. Kantabutra. Reaching a point with an unanchored robot arm in a square. International jou. of comp. geo. \& app., 7(6):pp. 539-549, 1997.
5. A. Mohades and M. Razazi, Reachability On a Region by two Attached Squares, ICCS'01, USA, Lecture Notes in Computer Sc., Vol. 2120, 2001.
6. A. Mohades and M. Razazi, Reachability Problem in T-shaped Rectilinear Polygon, Proc. 2th Fun With Algorithms, Italy, pp.199-213, 2001. 2001.
