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Abstract. We study knowledge-based systems using symbolic many-
valued logic and multiset theory. In previous papers we have proposed a
symbolic representation of nuanced statements like “John is very tall”.
In this representation, we have interpreted some nuances of natural
language as linguistic modifiers and we have defined them within a
multiset context. In this paper, we continue the presentation of our
symbolic model and we propose new deduction rules dealing with
nuanced statements. We limit ourselves to present new generalizations
of the Modus Ponens rule.
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1 Introduction

The development of knowledge-based systems is a rapidly expanding field in
applied artificial intelligence. The knowledge base is comprised of a database and
a rule base. We suppose that the database contains facts representing nuanced
statements, like “Jo is very tall”, to which one associates truth degrees. The
nuanced statements can be represented more formally under the form “x is mα

A” where mα and A are labels denoting respectively a nuance and a vague or
imprecise term of natural language. The rule base contains rules of the form “if
x is mα A then y is mβ B” to which one associates truth degrees.

Our work presents a symbolic-based model which permits a qualitative man-
agement of vagueness in knowledge-based systems. In dealing with vagueness,
there are two issues of importance: (1) how to represent vague data, and (2) how
to draw inference using vague data. When imprecise information is evaluated in
a numerical way, fuzzy logic which is introduced by Zadeh [11,12], is recognized
as a good tool for dealing with aforementioned issues and performing reasoning
upon common sense and vague knowledge-bases. In this logic, “x is mα A” is con-
sidered as a fuzzy proposition where A is modeled by a fuzzy set which is defined
by a membership function. This one is generally defined upon a numerical scale.
The nuance mα is defined such as a fuzzy modifier [3,10,12] which represents,
from the fuzzy set A, a new fuzzy set “mα A”. So, “x is mα A” is interpreted
by Zadeh as “x is (mα A)” and is regarded as many-valued statement. A second
formalism, refers to a symbolic many-valued logic [4,10], is used when imprecise
information is evaluated in a symbolic way. This logic is the logical counterpart
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of a multiset theory introduced by De Glas [4]. In this theory, the term mα lin-
guistically expresses the degree to which the object x satisfies the term A. So,
“x is mα A” means “x (is mα) A”, and then is regarded as boolean statement.
In other words, “mα A” does not represent a new vague term obtained from A.
In previous papers [7,8], we have proposed a symbolic-based model to represent
nuanced statements. This model is based on the many-valued logic proposed by
Pacholczyk [10]. Our basic idea has been to consider that some nuances of natu-
ral language can not be interpreted as satisfaction degrees and must be instead
defined such as linguistic modifiers. Firstly, we have proposed a new method to
symbolically represent vague terms of natural language. The basic idea has been
to associate with each vague term a new symbolic concept called “rule”. This
symbolic concept is an equivalent to the membership function within a fuzzy
context. By using the new concept, we have defined linguistic modifiers within
a multiset context. In this paper, our basic contribution has been to propose
deduction rules dealing with nuanced information. For that purpose, we pro-
pose deduction rules generalizing the Modus Ponens rule in a many-valued logic
proposed by Pacholczyk [10]. We notice that the first version of this rule has
been proposed in a fuzzy context by Zadeh [12] and has been studied later by
various authors [1,3,9]. This paper is organized as follows. In Sect. 2, we present
briefly the basic concepts of the M-valued predicate logic which forms the back-
bone of our work. Section 3 introduces briefly the symbolic representation model
previously proposed. In Sect. 4, we study various types of inference rules and
we propose new Generalized Modus Ponens rules in which we use only simple
statements. In Sect. 5, we propose a generalized production system in which we
define more Generalized Modus Ponens rules in more complex situations.

2 M-Valued Predicate Logic

Within a multiset context, to a vague term A and a nuance mα are associated
respectively a multiset A and a symbolic degree τα. So, the statement “x is mα

A” means that x belongs to multiset A with a degree τα. The M-valued predicate
logic [10] is the logical counterpart of the multiset theory. In this logic, to each
multiset A and a membership degree τα are associated a M-valued predicate A
and a truth degree τα−true. In this context, the following equivalence holds: x
is mα A ⇔ x ∈α A ⇔ “x is mα A” is true ⇔ “x is A” is τα−true. One supposes
that the membership degrees are symbolic degrees which form an ordered set
LM = {τα, α ∈ [1, M ]}. This set is provided with the relation of a total order:
τα ≤ τβ ⇔ α ≤ β, and whose smallest element is τ1 and the largest element is
τM . We can then define in LM two operators ∧ and ∨ and a decreasing involution
∼ as follows: τα ∨ τβ = τmax(α,β), τα ∧ τβ = τmin(α,β) and ∼ τα = τM+1−α. One
obtains then a chain {LM ,∨,∧,≤} having the structure of De Morgan lattice
[10]. On this set, an implication → and a T-norm T can be defined respectively
as follows: τα → τβ = τmin(β−α+M,M) and T (τα, τβ) = τmax(β+α−M,1).

Example 1. For example, by choosing M=9, we can introduce: L9={not at all,
little, enough, fairly, moderately, quite, almost, nearly, completely}.
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In the following of this paper we focus our intention on the management of
statements which are nuanced by linguistic modifiers. So, we consider that mα

A represents a multiset derived from A, and “x is mα A” is a many-valued
statement.

3 Representation of Nuanced Statements

Let us suppose that our knowledge base is characterized by a finite number of
concepts Ci. A set of terms Pik

1 is associated with each concept Ci, whose re-
spective domain is denoted as Xi. The terms Pik are said to be the basic terms
connected with the concept Ci. As an example, basic terms such as “small”,
“moderate” and “tall” are associated with the particular concept “size of men”.
A finite set of linguistic modifiers mα allows us to define nuanced terms, de-
noted as “mαPik”. In previous papers [7,8], we have proposed a symbolic-based
model to represent nuanced statements of natural language. In the following, we
present a short review of this model. We have proposed firstly a new method to
symbolically represent vague terms. In this method, we suppose that a domain
of a vague term, denoted by X, is not necessarily a numerical scale. This domain
is simulated by a “rule” (cf. Fig. 1) representing an arbitrary set of objects.
Our basic idea has been to associate with each multiset Pi a symbolic concept
which represents an equivalent to the membership function in fuzzy set theory.
For that, we have introduced a new concept, called “rule”, which has a geometry
similar to a membership L-R function and its role is to illustrate the member-
ship graduality to the multisets. In order to define the geometry of this “rule”,
we use notions similar to those defined within a fuzzy context like the core, the
support and the fuzzy part of a fuzzy set [12]. We define these notions within
a multiset theory as follows: the core of a multiset Pi, denoted as Core(Pi),
represents the elements belonging to Pi with a τM degree, the support, denoted
as Sp(Pi), contains the elements belonging to Pi with at least τ2 degree, and the
fuzzy part, denoted as F (Pi), contains the elements belonging to Pi with degrees
varying from τ2 to τM−1. We associate with each multiset a “rule” that contains
the elements of its support (cf. Fig. 3). This “rule” is the union of three disjoint

small moderate tall

X

Fig. 1. Representation with “rule” of a domain X

1 In the following, we use the same notation Pik to represent either a vague term Pik,
the multiset Pik and the predicate Pik associated with it.
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X

Supp(A)

Core(A)µA(x)

F(A)

L(x) R(x)

a ba-α b+β
τ8 τ7 τ6 τ5 τ4 τ3 τ2τ2 τ3τ4 τ5 τ6 τ7τ8 τΜ

Sp(Pi)X

(a)

[Li]2

Sp(Pi)X

(b)Ci

...... [Li]8 [Ri]8 [Ri]2

Fig. 2. A membership L-R function Fig. 3. Representation with “rule”

subsets: the left fuzzy part, the right fuzzy part and the core. For a multiset Pi,
they are denoted respectively by Li, Ri and Ci. We suppose that the left (resp.
right) fuzzy part Li (resp. Ri) is the union of M-2 subsets, denoted as [Li]α
(resp. [Ri]α), which partition it. [Li]α (resp. [Ri]α) contains the elements of Li

(resp. Ri) belonging to Pi with a τα degree. In order to keep a similarity with
the fuzzy sets of type L-R, we choose to place, in a “rule” associated with a
multiset, the subsets [Li]α and [Ri]α so that the larger α is, the closer the [Li]α
subsets and [Ri]α are to the core Ci (cf. Fig. 3). That can be interpreted as
follows: the elements of the core of a term represent the typical elements of this
term, and the more one object moves away from the core, the less it satisfies the
term. Finally, we have denoted a multiset Pi with which we associate a “rule”
as Pi = (Li, Ci, Ri), and we have introduced symbolic parameters which enable
us to describe the form of the “rule” and its position in the universe X. These
parameters have a role similar to the role of numerical parameters which are
used to define a fuzzy set within a fuzzy context.

3.1 Linguistic Modifiers

By using the “rule” concept we have defined the linguistic modifiers. We have
used two types of linguistic modifiers.

- Precision Modifiers: The precision modifiers increase or decrease the precision
of the basic term. We distinguish two types of precision modifiers: contraction
modifiers and dilation modifiers. We use M6 = {mk|k ∈ [1..6]} ={exactly,
really, ∅, more or less, approximately, vaguely} which is totally ordered by
j ≤ k ⇔ mj ≤ mk (Fig. 4).

- Translation Modifiers: The translation modifiers operate both a translation
and precision variation (contraction or dilation) on the basic term. We use
T9 = {tk|k ∈ [1..9]} ={extremely little, very very little, very little, rather
little, ∅, rather, very, very very, extremely} totally ordered by k ≤ l ⇔ tk ≤ tl
(Fig. 5). The translation amplitudes and the precision variation amplitudes
are calculated in such a way that the multisets tkPi cover the domain X.

In this paper, we continue to propose our model for managing nuanced state-
ments. In the following, we focus our intention to study the problem of exploita-
tion of nuanced statements.
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 Pi

Fig. 4. Precision modifiers Fig. 5. Translation modifiers

4 Exploitation of Nuanced Statements

In this section, we treat the exploitation of nuanced information. In particular,
we are interested to propose some generalizations of the Modus Ponens rule
within a many-valued context [10]. We notice that the classical Modus Ponens
rule has the following form: If we know that {If “x is A” then “y is B” is true
and “x is A” is true} we conclude that “y is B” is true. Within a many-valued
context, a generalization of Modus Ponens rule has one of the following forms:

F1- If we know that {If “x is A” then “y is B” is τβ-true and “x is A
′
” is

τε-true} and that {A
′

is more or less near to A}, what can we conclude for
“y is B”, in other words, to what degree “y is B” is true?

F2- If we know that {If “x is A” then “y is B” is τβ-true and “x is A
′
” is

τε-true} and that {A
′

is more or less near to A}, can we find a B
′

such as
{B

′
is more or less near to B} and to what degree “y is B

′
” is true?

These forms of Generalized Modus Ponens (GMP) rule have been studied firstly
by Pacholczyk in [10]. In this section, we propose new versions of GMP rule in
which we use new relations of nearness.

4.1 First GMP Rule

In Pacholczyk’s versions of GMP, the concept of nearness binding multisets A
and A

′
is modeled by a similarity relation which is defined as follows:

Definition 1. Let A and B be two multisets. A is said to be τα-similar to B,
denoted as A ≈αB, if and only if: ∀x|x ∈γ A and x ∈β B ⇒ min{τγ → τβ , τβ →
τγ} ≥ τα.

This relation generalizes the equivalence relation in a many-valued context as the
similarity relation of Zadeh [12] has been in a fuzzy context. It is (1) reflexive:
A ≈M A, (2) symmetrical: A ≈α B ⇔ B ≈α A, and (3) weakly transitive:
{A ≈α B, B ≈β C} ⇒ A ≈γ C with τγ ≥ T (τα, τβ) where T is a T-norm.
By using the similarity relation to model the nearness binding between multisets,
the inference rule can be interpreted as: {more the rule and the fact are true}
and {more A

′
and A are similar}, more the conclusion is true. In particular,

when A
′
is more precise than A (A

′ ⊂ A) but they are very weakly similar, any
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conclusion can be deduced or the conclusion deduced isn’t as precise as one can
expect. This is due to the fact that the similarity relation isn’t able alone to
model in a satisfactory way the nearness between A

′
and A. For that, we add

to the similarity relation a new relation called nearness relation whose role is
to define the nearness of A

′
to A when A

′ ⊂ A. In other words, it indicates the
degree to which A

′
is included in A.

Definition 2. Let A and B be two multisets such that A ⊂ B. A is said to be
τα-near to B, denoted as A �α B, if and only if {∀x ∈ F(B), x ∈β A and x ∈γ

B ⇒ τα → τβ ≤ τγ}.
The nearness relation satisfies the following properties: (1) Reflexivity: A �M

A, and (2) Weak transitivity: A �α B and B �β C ⇒ A �γ C with τγ ≤
min(τα, τβ). In the relation A �α B, the less the value of α is, the more A is
included in B. We can notice that the properties satisfied by the nearness relation
are similar to those satisfied by the resemblance relation proposed by Bouchon-
Meunier and Valverde [2] within a fuzzy context. Finally, by using similarity and
nearness relations, we propose a first Generalized Modus Ponens rule.

Proposition 1. Let A and A
′
be predicates associated with the concept Ci, B be

predicate associated with the concept Ce. Given the following assumptions:

1. it is τβ-true that if “x is A” then “y is B”

2. “x is A
′
” is τε-true with A

′ ≈α A.

Then, we conclude : “y is B” is τδ-true with τδ = T (τβ , T (τα, τε)).
If the predicate A

′
is such that A

′
�α′ A, we conclude: “y is B” is τδ-true with

τδ = T (τβ , τα′ −→ τε).

Example 2. Given that “really tall” ≈8 “tall” and “really tall” �8 “tall”, from
the following rule and fact:
- if “x is tall” then “its weight is important” is true2

- “Pascal is really tall” is quite-true,
we can deduce: “Pascal’s weight is really important” is almost-true.

4.2 GMP Rules Using Precision Modifiers

In the previous paragraph we calculate the degree to which the conclusion of the
rule is true. In the following, we present two new versions of GMP rule in which
the predicate of the conclusion obtained by the deduction process is not B but
a new predicate B

′
which is more or less near to B. More precisely, the new

predicate is derived from B by using precision modifiers3 (B
′
= mB). The first

version assumes that the predicates A and A
′
are more or less similar. In other

words, A
′

may be less precise or more precise than A. The second one assumes
that A

′
is more precise than A.

2 In our many-valued logic, “completely true” is equivalent to “true” in classical logic.
3 The definitions of these are presented in appendix A.
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Proposition 2. Let A and A
′
be predicates associated with the concept Ci, B be

predicate associated with the concept Ce. Let the following assumptions:

1. it is τβ-true that if “x is A” then “y is B”

2. “x is A
′
” is τε-true with A

′ ≈α A.

Let τθ = T (τβ , T (τα, τε)). If τθ > τ1 then there exists a τn(δ)−dilation modifier
m, with τδ ≤ T (τα, τβ), such that: “y is mB” is τε′-true and τε′ = τδ −→ τθ.
Moreover, we have: B ⊂ mB and mB ≈δ B.

This proposition prove that if we know that A
′

is more or less similar to A,
without any supplementary information concerning its precision compared to A,
the predicate of the conclusion obtained by the deduction process (mB) is less
precise than B (i.e. B ⊂ mB) and which is more or less similar to B. In the
following proposition, we assume that A

′
is more precise than A.

Proposition 3. Let A and A
′
be predicates associated with the concept Ci, B be

predicate associated with the concept Ce. Let the following assumptions:

1. it is τβ-true that if “x is A” then “y is B”

2. “x is A
′
” is τε-true with A

′
�α A.

Let τθ = T (τβ , τα −→ τε). If τθ > τ1 then there exists a τn(δ)−contraction
modifier m, with τδ ≥ τβ −→ τα, such that: “y is mB” is τε′-true and τε′ =
T (τδ, τθ).
Moreover, we have: mB �δ B.

This proposition prove that from a predicate A
′

which is more or less near to
A we obtain a predicate mB which is more or less near to B. More precisely,
if A

′
is more precise than A then mB is more precise than B. The previous

propositions (2 and 3) present two general cases in which we consider arbitrary
predicates A′. In the following, we present two corollaries representing special
cases of propositions 2 and 3 in which we assume that the rule is completely true
and that A′ is obtained from A by using precision modifiers.

Corollary 1. Let the following rule and fact:

1. it is true that if “x is A” then “y is B”
2. “x is mkA” is τε-true where mk is a τγk

−dilation modifier.

If T (∼ τγk
, τε) > τ1 then we conclude:

“y is mkB” is τε′-true, with τε′ =∼ τγk
−→ T (∼ τγk

, τε).

Example 3. Given the following data:
- if “x is tall” then “its weight is important” is true,
- “Jo is more or less tall” is moderately-true.
Then, we can deduce: “Jo’s weight is more or less important” is moderately-true.
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Corollary 2. Let the following rule and fact:

1. it is true that if “x is A” then “y is B”
2. “x is mkA” is τε-true where mk is a τγk

−contraction modifier.

Then, we conclude that: “y is mkB” is τε-true.

Example 4. Given the following data:
- if “x is tall” then “its weight is important” is true,
- “Pascal is really tall” is moderately-true.
Then, we can deduce: “Pascal’s weight is really important” is moderately-true.

These two corollaries present a particular form of graduality of inference. This
form is known as graduality by means of linguistic modifiers [5]. It enables us
to obtain, from a fact whose predicate A′ is nuanced by linguistic modifiers, a
conclusion whose predicate is also nuanced by linguistic modifiers.

5 Generalized Production System

In this section, we present some generalizations of Modus Ponens rule in more
complex situations. More precisely, we study the problem of reasoning in 4 sit-
uations:

1. When the antecedent of the rule is a conjunction of statements.
2. When the antecedent is a disjunction of statements.
3. In presence of propagation of inferences. In other words, when the conclusion

of the first rule is the antecedent of the second rule, and so on.
4. When a combination of imprecision is possible. In other words, when we have

some rules which have the same statement in their conclusion parts.

So, we present the following 4 propositions representing inference rules in these
situations.

Proposition 4 (Antecedent is a conjunction). Given the following assump-
tions:

1. if “x1 is A1” and ... and “xn is An” then “y is B” is τβ-true,

2. for i = 1..n, “xi is A
′
i” is τεi-true,

3. for i = 1..n, Ai ≈αi
A

′
i.

Then, we can deduce: “y is B” is τδ-true with τδ = T (τβ , T (τα1 , τε1)) ∧ ... ∧
T (τβ , T (ταn , τεn)).
If, for i = j .. k, the predicates A

′
i are such that A

′
i �α′

i
Ai, we can deduce: “y

is B” is τδ-true with τδ = τδ1 ∧ ... ∧ τδn and τδi = T (τα′
i

−→ τεi , τβ) if i ∈ [j, k]
and τδi

= T (τβ , T (ταi
, τεi

)) if not.



A Symbolic Approach to Vagueness Management 117

Proposition 5 (Antecedent is a disjunction). Given the following assump-
tions:

1. if “x1 is A1” or ... or “xn is An” then “y is B” is τβ-true,

2. for i = 1..k, “xi is A
′
i” is τεi-true,

3. for i = 1..k, Ai ≈αi
A

′
i.

Then, we can deduce: “y is B” is τδ-true with τδ = T (τβ , T (τα1 , τε1)) ∨ ... ∨
T (τβ , T (ταk

, τεk
)).

If, for i = j .. L, the predicates A
′
i are such that A

′
i �α′

i
Ai, we can deduce: “y

is B” is τδ-true with τδ = τδ1 ∨ ... ∨ τδk
and τδi = T (τα′

i
−→ τεi , τβ) if i ∈ [j, L]

and τδi
= T (τβ , T (ταi

, τεi
)) if not.

Proposition 6 (Propagation of inferences). Given the following assump-
tions:

1. if “x is A” then “y is B” is τβ-true,
2. if “y is B” then “z is C” is τγ-true,

3. there exists τε > τ1 such that “x is A
′
” is τε-true,

4. there exists τα such that A ≈α A
′
.

Then, we can deduce: “z is C” is τδ-true, with τδ = T (T (τβ , τγ), T (τα, τε)).
If the predicate A

′
is such that A

′
�α′ A, then we can deduce: “z is C” is τδ-true,

with τδ = T (T (τβ , τγ), τα′ −→ τε).

Proposition 7 (Combination of imprecisions). Given the following as-
sumptions:

1. for i = 1..n, if “xi is Ai” then “y is B” is τβi
-true,

2. for i = 1..n, “xi is A
′
i” is τεi-true,

3. for i = 1..n, Ai ≈αi
A

′
i,

then we can deduce that: “y is B” is τδ-true with τδ = T (τβ1 , T (τα1 , τε1)) ∨ ... ∨
T (τβn

, T (ταn
, τεn

)).
If, for i = j .. k, the predicates A

′
i are such that A

′
i �α′

i
Ai, then we can deduce:

“y is B” is τδ-true with τδ = τδ1 ∨...∨τδn
and τδi

= T (τα′
i
−→ τεi

, τβi
) if i ∈ [j, k]

and τδi = T (τβi , T (ταi , τεi)) if not.

We present below an example in which we use the GMP rules presented in
this section. In this example, we use index cards written by a doctor after his
consultations. From index cards (ICi) and some rules (Rj), we wish deduce a
diagnosis.

Example 5. Let assume that we have the following rules in our base of rules.

R1− “If the temperature is high, the patient is ill” is almost true,
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R2− “If the tension is always high, the patient is ill” is nearly true,
R3− “If the temperature is high and the eardrum color is very red, the disease

is an otitis” is true,
R4− “If fat eating is high, the cholesterol risk is high” is true,
R5− “If the cholesterol risk is high, a diet with no fat is recommended” is true.

Let us assume now that we have an index card for a patient and we want to
deduce a diagnosis.

F1− “the temperature is rather high” is nearly true,
F2− “the tension is always more or less high” is almost true,
F3− “the eardrum color is really very red” is quite true,
F4− “the fat eating is very very high” is moderately true.

Using the GMP rules previously presented, we deduce the following diagnosis:

D1− “the patient is ill” is almost true,
D2− “the disease is an otitis” is almost true,
D3− “the cholesterol risk is high” is true,
D4− “a diet with no fat is recommended” is true.

Let us assume that we have the following relations: “rather high” �7 “high”,
“more or less high” ≈8 “high”, “really very red” �8 “very red” and “very very
high” �2 “high”. Then, the diagnosis (D1 - D4) are obtained as follows.

- D1 is obtained by applying proposition 7 to (F1,F2) and (R1,R2),
- D2 is obtained by applying proposition 4 to (F1,F3) and R3,
- D3 is obtained by applying proposition 1 to F4 and R4,
- D4 is obtained by applying proposition 6 to F4 and (R4,R5).

6 Conclusion

In this paper, we have proposed a symbolic-based model dealing with nuanced
information. This model is inspired from the representation method on fuzzy
logic. In previous papers, we have proposed a new representation method of nu-
anced statements. In this method, we have defined a vague term by symbolic
parameters given by an expert in a qualitative way. By using this representa-
tion, we have defined some linguistic modifiers in a purely symbolic way. In this
paper, we proposed some deduction rules dealing with nuanced statements and
we presented new Generalized Modus Ponens rules. In these rules we can use
either simple statements or complex statements.
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