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Abstract. Protein interactions, when visualized as an undirected graph,
often yield a nonplanar, disconnected graph with nodes of wide range of
degrees. Many graph-drawing programs are of limited use in visualizing
protein interactions, either because they are too slow, or because they
produce a cluttered drawing with many edge crossings or a static drawing
that is not easy to modify to reflect changes in data. We have developed
a new force-directed layout algorithm for drawing protein interactions in
three-dimensional space. Our algorithm divides nodes into three groups
based on their interacting properties: biconnected subgraph in the center,
terminal nodes at the outermost region, and the rest in between them.
Experimental results show that our algorithm efficiently generates a clear
and aesthetically pleasing drawing of large-scale protein interaction net-
works and that it is much faster than other force-directed layouts.

1 Introduction

Recent improvements in high-throughput proteomics technology such as yeast
two-hybrid [4, 11] have produced a rapidly expanding volume of protein interac-
tion data of an unprecedented scale. The interaction data is available either in
text files or in databases. However, due to the volume of data (e.g., thousands of
interacting proteins), a graphical representation of protein-protein interactions
has proven to be much easier to understand than a long list of interacting pro-
teins, prompting visualization studies of protein-protein interaction networks.
A Java applet program [6] has been developed for drawing protein interac-
tions based on a relaxation algorithm and tested on the yeast two-hybrid (Y2H)
data [11]. This program requires all protein-protein interaction data to be pro-
vided as parameters of the applet program in html sources. There is no way
to save a visualized graph except by capturing the window. An image captured
from the window is a static image and is of a generally low quality. It cannot be
refined or changed later to reflect an update in data. A user can move a node
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but cannot select or save a connected component containing a specific protein
for later use. Recent work on yeast proteome also utilized a relaxation algorithm
to visualize a protein complex network [3].

Other visualization works on protein interactions do not have their own algo-
rithms or programs developed for visualization, but use general-purpose drawing
tools. PSIMAP [7], for example, displays interactions between protein families
by comparing the Y2H data with the DIP data [12]. It was drawn by Tom Sawyer
software (http://www.tomsawyer.com/) and then refined by significant amount
of manual work to remove the edge crossings. From the perspective of graph
drawing, PSIMAP is a static image and leaves several things to be improved.
A research group of University of Washington [9, 10] has visualized the Y2H
data using another general-purpose drawing tool called AGD (http://www.mpi-
sb.mpg.de/AGD/). Although AGD is powerful, it is a general-purpose drawing
tool and does not provide a function that we hold are necessary for studying
protein-protein interactions.

Existing visualization studies in protein interactions suggest that the nature
of protein interaction data require a new graph layout method for protein inter-
action networks. Protein interaction data can be characterized as follows:

1. The data yields a nonplanar graph with a large number of edge crossings
that cannot be removed in a two-dimensional drawing.

2. Proteins have a very wide range of interacting proteins within the same set
of data, so a graph visualizing the data contains nodes of very high degree
as well as those of low degree.

3. When visualized as a graph, the data yields a disconnected graph with many
connected components. The MIPS genetic interaction data (http://mips.gsf.
de/proj/yeast/tables/interaction/), for example, contains 113 connected com-
ponents.

4. The data often contains protein interactions corresponding to self-loops.

Considering these characteristics of protein interaction data, we have devel-
oped a new layout algorithm that divides nodes into three groups based on their
interaction properties and layouts each group in three-dimensional space. The
rest of this paper describes our algorithm and experimental results.

2 A Partitioned Approach to Graph Drawing

A common problem with many force-directed algorithms is that they become
very slow when dealing with large graphs. We propose a new force-directed
algorithm which divides nodes into three groups based on their interaction char-
acteristics. Our layout is an extension of the algorithm by Kamada & Kawai [5]
for drawing two-dimensional graphs. Their original algorithm has been modified
not only for three-dimensional graph drawing but also for improvements in the
efficiency and resulting drawings of the algorithm.
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2.1 Finding Groups

Protein-protein interaction data can be visualized as an undirected graph G =
(V, E), where nodes V' represent proteins and edges F represent protein-protein
interactions. The degree of a node v; is the number of its edges denoted by
deg(v;). An edge e = (v;,v;) with v; = v; is a self-loop. A cutvertez in a graph
G is a node whose removal disconnects G. A path in a graph G is a sequence
(v1,v2,...,v,) of distinct nodes of G, such that (v;,v;y1) € Efor 1 <i<mn-—1.
A graph G’ = (V', E’), such that V' CV and E' C EN (V' x V'), is a subgraph
of graph G = (V, E). We divide nodes V into three exclusive and exhaustive
groups: Vi, Vo, V3. The three groups are defined as follows:

— Group V1 is a set of terminal nodes, i.e., nodes with degree 1.

— Group V5 is a set of nodes in V-V1, which are in the subgraphs separated by
cutvertices of degree > 3, except the nodes in the largest subgraph separated
by the cutvertices.

— Group V3 consists of nodes which are members of neither V; nor V5.

Example 1 Counsider a graph G = (V, E) displayed in Fig. 1. The nodes in G
are separated into three groups. Six nodes belong to Vi and these are separated
into three sub-groups, Vi = {{v1}, {vs, v9,v10},{v31,v32}}. Each of the three
sub-groups shares a neighbor. O

Fig. 1. Example of a partitioned graph. The nodes of V; are enclosed in yellow boxes,
V2 in green boxes, and V3 in an orange box.

Example 2 In Fig. 1, two sub-groups S; = {vg,v7} and S = {va9,v30} share
a cutvertex vy1, so they are merged into one sub-group of V5. Sub-groups S3 =
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{24, v26, v27} and Sy = {v2, V20, V21, Va2, V23, V24, V26, V27 } do not share a cutver-
tex since the cutvertex of S3 is vy and that of Sy is vo5. However, Ss is not
counted as a sub-group of V5 since S3 C Sy. a

Algorithm 1 FindCutvertex

1: for all v; such that degree(v; > 2) do
2: inputSet =V — V; —w;

3:  while P = IsCutvertex(inputSet) do
4: inputSet = inputSet -P

5 end while

6: end for

Algorithm 2 IsCutvertex(givenSet)

1: Randomly select a starting node vs € givenSet.

2: Insert vs to a stack S.

3: while there is a top node v; in S do

4: Popup v; and assign v+ to a current node v..

5: if v. is not marked then

6: Mark v, and insert v to P; {P;: a set of nodes in the path between vs and v;}
7 Insert neighbors v, of v. to S, s.t. v are not marked.

8: end if

9: end while

10: Insert nodes not in P; to P;.
11: if (|P;| > 0) and (| P{| > 0) then
12:  if |P;| < |P/| then

13: Insert v € P; to V2 and Return P;.
14: else

15: Insert v € P/ to Vo and Return P/.
16:  end if

17: end if

18: Return false

Nodes of each group are found in the order of Vi, V5, and V3. First, nodes
with one neighbor are classified into V;. Nodes of V; are further divided into
sub-groups according to their shared neighbors. From V — Vi, nodes in V5 are
then found, and all remaining nodes constitute V3.

After finding V7, nodes of V5 are determined by our heuristic algorithm Find-
Cutvertez outlined in Algorithm 1. The initial input to the algorithm is nodes
in V — Vj. For each input node v;, the algorithm tests whether the node is a
cutvertex (line 3 of Algorithm 1). Let P be the set of nodes in the path between
v; and the starting node and P’ be the set of nodes not in the path. If neither
of P and P’ is empty, the node v; is a cutvertex and the loop is repeated for the
remaining nodes. The nodes in the smaller set between P and P’ are included
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in V5 (lines 11-17 of Algorithm 2). The nodes of V5 are further separated into
sub-groups based on their cutvertex. These sub-groups are merged into one if
they have the same cutvertex. All remaining nodes after determining both
and Vs constitute V3. V3 corresponds to a biconnected subgraph (a connected
graph with no cutvertices) in protein interaction data.

2.2 Force-Directed Layout for Three-Dimensional Graph Drawing

The algorithm by Kamada & Kawai [5] searches for a drawing in which the
energy is locally minimal. The aim of our algorithm is to find a drawing in
which the actual distance between two nodes is approximately proportional to
the desirable distance between them. The global energy of a spring system with
n nodes is defined by the equation:
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where k;; is the stiffness parameter of a spring, p; is the position of a node v;,
and [;; is the length at rest of the spring connecting v; and v;.

The algorithm seeks a position p,, = (T, Ym, 2m) for each vertex v, to
minimize the potential energy in the spring system. Minima occur when the
partial derivatives of E with respect to each variables ., ym, and z,, are zero.
This gives a set of 3|V| = 3n equations
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In Kamada & Kawai’s algorithm [5], a node is moved to a position that
minimizes energy while all others remain fixed. The node to be moved is chosen
as the one with the largest force acting on it, i.e., the one for which

JOEY () (2

is maximized over all v, € V. However, this approach often yields unpleasant
graphs and takes too much time for large-scale protein interactions. Thus, our
algorithm moves all nodes to some level in each iteration until the difference
between the current position and the previous position falls below a certain
threshold value. For an initial layout we place nodes on the surface of a sphere
instead of placing them randomly. Our algorithm yields more pleasant drawings
than Kamada & Kawai’s algorithm and is much faster for graphs with balanced
groups.

=0, v,V (2)
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Algorithm 3 ShortestPath

1: Compute adjacency matrix Afa,b] in G, for 1 <a < b<n.

2: Initialize shortest-path matrix S|a,b] in G, for 1 < a <b < n.
3: for all V;, i =3,2,1 do

4: if V3 then
5: Call FindShortestPath(Vs,null) {in Algorithm 4}
6: else if V5 then
T for all each sub-group Gs do
8: Call FindShortestPath(G U v, null) {ve: shared cutvertex of G}
9: Call FindShortestPath(Gs U V3, ve)
{compute S[p, g] not defined for p # ¢ € G5 U Vs}

10: end for
11: else if V7 then
12: for all each sub-group Gs do
13: Call FindShortestPath(Gs U vy, null) {vn: shared neighbor of G}
14: Call FindShortestPath(Gs U V3 U Va, vp)

{compute S[p, ¢] not defined for p # ¢ € G, U V3 U Va}
15: end for
16:  end if
17: end for

Algorithm 4 FindShortestPath (N, givenK)

1: for all k such that k € N or givenK do
2:  for all [ such that [ € N do

3 Slk,1] = A[k,l] (S[k,l] =21if V; = W) {S]k,1]: shortest-path matrix}
4 for all m such that m € N do

5 if S[l,m] > S[i, k] + S[k,m], for (m # k)&&(m # 1) then

6 S[l,m] = S[l, k] + S[k,m]

7 end if

8 end for

9 end for

10: end for

2.3 Finding Shortest Paths in Groups

The shortest path between every pair of nodes is computed for each group
Vi,i = 1,...,3. The algorithm for computing shortest paths is summarized in
Algorithms 3 and 4. We first compute shortest paths between nodes in V3. For
V5 and V7, shortest paths are determined in each of their sub-groups. After com-
puting shortest paths between nodes in each sub-group, shortest paths between
nodes of V5 and nodes of V3 are computed using a shared cutvertex of each sub-
group of V4 (line 9 of Algorithm 3). Likewise, shortest paths between nodes of V3
and nodes of V5 and V3 are computed using a shared neighbor of each sub-group
of V1 (line 14). For a sub-group of V1, the initial shortest path between every pair
of nodes is set to 2, since the distance between a node and its shared neighbor
is 1 (line 3 of Algorithm 4).
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3 Analytical and Empirical Evaluation

Here we briefly analyze the computational cost of our algorithm. Assuming that
three groups are balanced, the total time for our algorithm is (%)% + (%)% +
(%)3 = 5 because we apply spring-embedder algorithm on each group. The
asymptotic time complexity of our algorithm is the same as the time complexity
O(n?) of Kamada & Kawai’s algorithm [5]. But our algorithm is much faster
Kamada & Kawai’s algorithm in practice. Since the nodes in V; and V5 are
further divided into sub-groups, actual running times are reduced further for
graphs with balanced groups. For a graph with unbalanced groups (for example,
a graph in which the portion of V3 is high due to few cutvertices or terminal
nodes), the effect of dividing into three groups can be marginal, which is rare in
protein interaction data. This has been supported by the experimental study to
be discussed later.

Our algorithm was implemented in Microsoft C#. The program runs on any
PC with Windows 2000/XP/Me/98/NT 4.0 as its operating system. We tested
the program on five cases, the PSIMAP data [7], Helicobacter pylori data [8],
Y2H data [11], and the data of protein interactions in yeast from the BIND
(http://www.binddb.org/) and DIP (http://dip.doe-mbi.ucla.edu/) databases.
In each of these data of protein interactions, the largest connected component
was used for comparison. Table 1 shows the running times of our algorithm at
each stage of partitioning nodes into three groups, finding shortest paths in all
three groups, and layout and drawing.

Table 1. Running times of our algorithm at each stage. Hpylori: helicobacter pylori,
P: partitioning nodes into Vi, V2 and V3, SP: finding shortest paths in all groups, LD:
layout and drawing.

Nodes Running times
Data Edges Vi Vo V3 P SP LD total

(min: sec) (min: sec) (min: sec) (= P+ SP+ LD)
PSIMAP 661 187 83 171 00:00.06 00:00.04 00:02.02 00:02.12
Hpylori 1396 434 9 267 00:00.31 00:00.20 00:07.36 00:07.87
Y2H 12909 3066 28 642 00:26.78 00:34.38  09:12.25 10:13.41
BIND 8243 3039 45 893 00:15.67 00:26.02 08:21.82 09:03.51
DIP 14415 3278 126 1195 00:30.00 00:43.45 10:41.64 11:55.09

Fig. 2A shows an initial layout by our algorithm for the Y2H data with 12909
interactions between 3736 proteins. While we find groups in the order of Vi, V5,
and V3, we layout them in reverse order; V3 is first positioned in the center of
the sphere, V5 in the outer region of V3, and V; in the outer region of V5 and
V3. Groups for which node positions are fixed are shown in a rectangle. Nodes
in remaining groups are relocated with modified polar coordinates in order to
place them in the outer region of the groups that have been fixed. In Figs 2B



Visualization of Protein-Protein Interaction Networks Using Force-Directed Layout 197

@wa o @

@0e o @ © @ © o @ © 2 ©° 0 0o®m

WO O H 0 6 8 g 8 o B G ooy
WO O O 0 0 9 0 9 9 Qo0
@O A O 0O D 00D
OO AHATD

ORI
@A DG G D GG a a0
moocao o 6 0 0 0 o o000

@o0 0 9 0 0 a6 a4 A a0 0axD

oo e @ @ o @ a@ @ @ 0 @ ¢ oo

@e o o o o om

@woa @ o @ em

oo e @ @ o @ a@ @ @ 0 @ ¢ oo

@o0 0 9 0 0 a6 a4 a a0 0axD

WO QO O D v QD DD OO
@OAA DA A D GG aAN0D
EEEOAOO0DCHTED

Fig. 2. Drawings of the Y2H data with 12909 interactions between 3736 proteins. (A)
Initial layout, (B) After drawing the nodes in V3 shown in the rectangle, (C) After
drawing the nodes in V3 and V2 shown in the rectangle, (D) Final drawing.



198 Y.Byun and K. Han

and 2C, edges between nodes in the outer area are not shown for the clarity of
the drawing.

For the purpose of experimental comparison with other algorithms, we also
ran Pajek [1] with Fruchterman & Reingold’s algorithm [2] and our own im-
plementation of Kamada & Kawai’s algorithm [5]. Since Kamada & Kawai’s
algorithm produces a two-dimensional drawing only, we extended their algo-
rithm to a three-dimensional drawing. Table 2 shows the running times of our
algorithm, Kamada & Kawai’s algorithm extended to 3D, and Fruchterman &
Reingold’s algorithm on five test cases on a Pentium IV 1.5Ghz processor. With
our partitioning method, the computation time can be significantly reduced. The
running times of the three algorithms are also plotted in Fig. 3. It follows from
this result that our algorithm is more effective for bigger graphs and for graphs
with balanced groups.

Table 2. Running times of graph drawing algorithms on 5 test cases on a Pentium IV
1.5Ghz processor. K-K extended to 3D: Kamada & Kawai’s algorithm extended for 3D
drawing. Pajek (F-R): Pajek with Fruchterman & Reingold’s layout.

Data Nodes Edges Our algorithm  K-K extended to 3D Pajek (F-R)

PSIMAP 441 661 00m 02.12s 00m 07.69s 00m 33s
Hpylori 710 1396 00m 07.87s 00m 22.14s 01lm 14s
Y2H 3736 12909 10m 13.41s 13m 23.47s 32m 10s
BIND 3977 8243 09m 03.51s 14m 24.39s 41m 37s
DIP 4599 14415 11m 55.09s 19m 09.81s 55m Hbs
4000.00
3500.00 | —o— Partitioned
—=— kamada-kawai 3D
3000.00 | _, pajek
o 2500.00
b3
o 2000.00
E 1500.00
1000.00
500.00
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441 710 3736 3977 4599

Number of Nodes

Fig. 3. Running times of three graph drawing algorithms.
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4 Discussion and Conclusions

Many force-directed graph drawing algorithms are too slow to be used for vi-
sualizing large-scale protein interactions and they often yield unclear drawings
with many edge crossings. This paper presented a new algorithm for drawing
large-scale protein interaction networks in three-dimensional space. The algo-
rithm divides nodes into three groups: a biconnected subgraph in the center of a
graph (V3), terminal nodes at the outermost region (V7), and the rest in between
them (V2). These groups are identified from the outer group (V) to inner one
(V3) and are placed in reverse order. Experimental results demonstrate that the
algorithm generates clear and aesthetically pleasing drawings of both large and
small scale graphs and that for graphs with balanced groups it is significantly
faster than other force-directed algorithms.
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