
visPerf: Monitoring Tool for Grid Computing

DongWoo Lee1, Jack J. Dongarra2, and R.S. Ramakrishna1

1 Department of Information and Communication
Kwangju Institute of Science and Technology, Republic of Korea

{leepro,rsr}@kjist.ac.kr
2 Innovative Computing Laboratory

Computer Science Department, University of Tennessee, Knoxville, USA
dongarra@cs.utk.edu

Abstract. It is difficult to see the status of a working production grid
system without a customized monitoring system. Most grid middleware
provide simple system monitoring tools, or simple tools for checking sys-
tem status. visPerf is a general purpose grid monitoring tool for visual-
izing, investigating, and controlling the system in a distributed manner.
visPerf is a system based on a distributed monitoring sensor, visSensor,
in which the sensor uses methods to monitor the status of grid middle-
ware with little or no modifications to the underlying system.

1 Introduction

Primarily due to the emergence of high speed backbone network services such as
vBNS and the Internet2, Grid Computing [6] has become one of the most excit-
ing new trends in high-performance computing. Ease of use and total computing
resource unification involving many kinds of computing tools, including new net-
work facilities and new software, have contributed to the growing interest. The
computing resources span large geographical areas ranging from inter-campus to
international dimensions. As the number of resources increases, so does proneness
to faults. Even though fault-tolerant mechanisms [9,12,10] exist for grid middle-
ware, human intervention is still required for recognizing certain problems of the
system. Because huge amounts of data are produced by many components of the
system in the form of logs and trace events, it is often very difficult, especially in
a large scale system, to find the proverbial ”needle in a haystack” without human
intervention. To maintain such large scale grid systems, we need the capability to
monitor the system. Most grid middleware [2,4,1,7] have this capability to some
extent. A monitoring system that is simple and that supports a heterogeneous
environment is the need of the hour. visPerf is a kind of monitoring system for
grid computing in which multiple computing entities are involved in solving a
computational problem with parallel and distributed computing tools.

We describe the problems and the requirements of the monitor software for
grid computing environment in Sect. 2. In Sect. 3, the system architecture of
visPerf is presented with design concepts in detail, including its sensor archi-
tecture, monitor viewer, and monitor peer-to-peer network. In Sect. 4, we show

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 233–243, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



234 D.W. Lee, J.J. Dongarra, and R.S. Ramakrishna

an example monitor, visPerf for NetSolve. Related work is presented in Sect. 5.
Finally, we conclude the work in Sect. 6.

2 Support for Grid Computing

For grid computing, a monitoring system has to consider several requirements. It
is also a design goal that the monitoring system be for grid computing. Most grid
middleware consists of three parts: client (e.g. user application), management
(e.g. resource scheduler), and resource (e.g. server, storage and etc). For the
client part, users develop their application with grid middleware’s programming
interface. In the working phase, the user’s grid application contacts the resource
scheduler to get a resource for its computation. Then, the application can use the
assigned resource. Because resources on a grid are located over a wide area (i.e.
loosely coupled), it is difficult to be aware of errors and/or problems that result
from a user’s application. Grid middleware supports remote machines’ standard
output handles1 to show the user the output of the application’s execution.
When the number of processes of a user application becomes large, it is often
very difficult to track the errors/problems. If the interactions of the system can
be visualized, then the user can better understand and maintain the system.
Besides capturing the interactions of a grid application, it is useful to gather
information such as the performance of a local machine’s processor workload,
disk usage and so on, which are related to remote machines in the grid. Users
demand a tool for monitoring their system with little effort. To accommodate
demands of a monitoring system for grid computing, there are several problems
and requirements that must be met.

Fig. 1. Centralized+decentralized hybrid peer-to-peer network topology

1 STDOUT/STDERR



visPerf: Monitoring Tool for Grid Computing 235

2.1 Problems

While building a monitoring system for grid computing, we face several problems
such as the following:

Heterogeneity. Hardware and software are configured to be used by grid mid-
dleware. In the case of a local system that is in the form of a cluster-like server
system, the middleware does not need to consider heterogeneity support because
it usually uses the same types of machines and software. But in the grid scale
computing environment, the components of the system are located across a wide
area and have various types of components, including grid middleware. We need
a way to collect the information for the purpose of managing or investigating its
working status with heterogeneity support.

Access Network. Due to the various network access policies including firewall,
NAT, and so forth, sometimes it is difficult to monitor remote machines in a
simple manner. In the case of grid middleware, it has its own mechanism for
remote communication with a security mechanism (e.g. Kerberos). To get con-
sistent access to a remote monitoring object, we have to use a tolerant protocol
or interface to a network site having restricted access protocols.

Size of Information. The speed of transferring monitored information to
an appropriate location is restricted by the capacity of the remote system and
the communication channel. We have to devise a way to reduce the size of the
monitoring data.

Interoperability. Monitored information can be shared with other applications
such as grid resource scheduler and other monitoring systems. To accommodate
such applications, an interoperable interface is required.

Scalability. In the grid network, we have to consider the scalability due to the
multiple entities to be monitored. The NetSolve production grid [5], for example,
sometimes exceeds 100 hosts. This is the case with just a local grid. But, if this
grid extends into other external grids, the scalability issues of the monitoring
system become more complicated.

2.2 Requirements

Support Various Systems. To monitor various grid systems, we have to have
a way to get information from a target running system. We considered two ways
for accomplishing this: indirect and direct interfaces. If grid middleware has no
monitoring facility offering its internal status to an external program, we have to
use indirect information, that is, log information as a form of an accessible data
object. This information can be used by a monitoring system when the system is
not integrated into the middleware, and hence the need for a program to process
the log information generated by the grid in real time. If the grid middleware has
a monitoring facility, we can use its interface directly. It also requires minimal
effort to integrate it into the monitoring system.



236 D.W. Lee, J.J. Dongarra, and R.S. Ramakrishna

Fig. 2. Overview of visPerf monitoring system

Network Topology of Monitor. To deal with the problems listed above, a
monitoring system should build a network for itself because it is necessary for a
monitoring system to be efficient and simple. Because the centralized network of
typical monitoring systems does not fit well with the nature of grid computing,
we considered a peer-to-peer network topology [8]. Deploying this peer-to-peer
network can cope with large amounts of data to be transferred to one point and
can address the scalability problem due to the bottleneck effect when accessing
the monitoring system. The monitoring system can maintain local information
and then it can be shared with other outside monitoring systems. The appropri-
ate P2P topology is the ”centralized+decentralized hybrid P2P network topol-
ogy” (shown in Fig. 1) because with this we can handle the local grid system in
a centralized manner and the global grid in a decentralized manner. Each local
representative sensor captures and maintains monitored information of a local
grid 2.

Network Access Interface (Protocol). To solve the interface access problem
mentioned before, we have to use some form of a flexible mechanism. We consid-
ered two network access interfaces (protocol): general TCP data communication
(using monitor’s own communication protocol) and XML-RPC [13] through a
web server. Depending on the condition of a site to be accessed, we can use these
two methods adaptively.

3 Monitoring System’s Design Approach

With these problems and requirements in mind, we have designed a monitoring
system architecture. Figure 2 presents the overview of the visPerf monitoring
2 a.k.a local cluster or one unit of local machines using a same grid middleware



visPerf: Monitoring Tool for Grid Computing 237

system3. Most grid middleware [4,2,1,7] consists of three parts as illustrated in
the figure: client, management, and resource (server). This will be explained be-
low, with the NetSolve system in mind. In the client portion, there is a client
application equipped with a grid middleware-aware software library. This client
application (grid middleware library) uses a resource scheduler of its own in or-
der to get a resource to be used. For this grid configuration, we positioned a
monitoring system in each part. The sensor is a service daemon for collecting a
local host’s information and propagating that information to a subscriber mon-
itor viewer. The main controller, visPerf, is used to control the remote sensor
as well as to analyze and visualize the collected information interactively by the
user. As a remote sensor, visSensor works for monitoring a local machine.

3.1 Local Monitor: visSensor

visSensor is a monitor residing on a local machine. It is responsible for sensing
a local machine’s status by gathering that machine’s performance information4

and special purpose information that is tailored for a specific system like grid
middleware (i.e. system interactions). A local machine’s general performance
information is gathered by performance measuring tools such as vmstat, iostat,
top of UNIX-based system performance tools.

For specific system tailored monitoring, we support two methods: log-based
monitoring and profiling API-based monitoring. As mentioned previously, there
are various run-time systems of grid middleware. The simplest way to monitor
a run-time system without any modification to the system is to use its log file
because most run-time systems log their status into the log file for the purpose
of debugging and monitoring. Although this method is simple, the log file of a
grid middleware application has to have a formal form to depict its status in a
consistent manner, that is, with a rule (or grammar) of the log file. To capture
the running sequence in the case of NetSolve, logs have to have a meaningful
format such as:

..<omitted>...
NS_PROT_PROBLEM_SUBMIT: Time 1017336647 (Thu Mar 28 12:30:47 2002),
Nickname inttest, Input size 12, Output Size 12, Problem Size 1,
ID leepro@anaka.cs.utk.edu

Server List for problem inttest:
neo15.sinrg.cs.utk.edu
neo9.sinrg.cs.utk.edu
..<omitted>...
NS_PROT_JOB_COMPLETED_FROM_SERVER: neo15.cs.utk.edu inttest 0
..<omitted>...
Server cypher12.sinrg.cs.utk.edu: latency: 1012 bandwidth: 870885
Server neo13.sinrg.cs.utk.edu: workload = 100
..<omitted>...

The log presented above, for example, is a part of the NetSolve log file that
is produced by its central agent (the resource scheduler of NetSolve). We can
3 The figure illustrates the NetSolve grid middleware as a representative grid system

with visPerf
4 CPU workload, memory status, disk I/O, and so forth.



238 D.W. Lee, J.J. Dongarra, and R.S. Ramakrishna

figure out the sequence of the call from a client (”ID leepro@anaka.cs.utk.edu”) to a
server ”neo15.sinrg.cs.utk.edu”. The client sends a request (”NS PROT PROBLEM SUBMIT”)
to the resource scheduler. Then, the scheduler presents the available resource
list. The server (”neo15.sinrg.cs.utk.edu”) is selected for the client. In this case, the
first on the resource list is the selected resource because NetSolve’s agent calcu-
lates collected performance information for each resource, applies a scheduling
algorithm internally, and then sorts the lists in the order of the ”most idle”
(least loaded) machine. In addition to log-based monitoring, some systems have
a profiling API-based interface for internal or external monitoring. For example,
NetSolve has ”Transactional Logging Facility” that is used by components of
NetSolve to notify its activities to an information database server of NetSolve.
In the case of NetSolve, all the components transfer their logs onto the agent.
So, the rate of logging into a log file is very high when there are many computing
resources. Consequently, the visSensor’s consumption of the log file in real time
requires that large amounts of data be transferred to a subscriber. To alleviate
this effect, visPerf has a preprocessing filtering function. This has two advan-
tages: lightweight data size to be transferred to a subscriber and a standard
format of a log to support various types of grid middleware. Figure 3 (right)
shows components of visSensor in which there are several layers. The Info/Log
Collector collects a local machine’s general performance information (e.g, I/O
and Kernel by using /proc) and filters a specific system’s log (e.g. NetSolve log
filter in the figure).

Fig. 3. Components of visPerf: sensor and main controller (visualizer)

3.2 Managing and Presenting Monitored Information: visPerf

visPerf is used for browsing and controlling the status of a local machine via a lo-
cal sensor (visSensor). Figure 3 shows the relationship between the visPerf main
controller and the local visSensor and components of each side. visPerf employs
several protocols as a communication subsystem. For example, the NetSolve
module at the bottom of the figure is used for communicating with the NetSolve
agent to query its resource availability. The Sensor protocol module is the core
communication module that provides two kinds of communication protocols: raw



visPerf: Monitoring Tool for Grid Computing 239

monitor protocol and XML-RPC protocol. The access protocol can be changed
in accordance with the user environment. Also, a user can make its own visu-
alizer through an XML-RPC interface of any programming language. Using the
Control module, visPerf can control local sensors registered in the main con-
troller or directly control a local sensor by specifying its network address. This
module periodically sends a synchronization message to its local sensors. If a
sensor is out of order or having a problem, a user can discover it. The monitored
information is presented via multiple graphical presentations: the performance
fluctuation graph and the interaction map. The interactions of the middleware
are displayed in an animated resource map. The sequence of an interaction ani-
mation is based on the logs defined in the appropriate sensor filter in which the
log runs from the beginning of a call (from a client application) to the end of
the call.

(a) (b)

Fig. 4. (a) Monitor directory service: visPerf can connect to a local sensor through
MDS, (b) monitor proxy: behind firewall (left), private IP network with an access
point (right)

3.3 Peer-To-Peer Monitor Network

As mentioned in Sect. 2.2, a network topology for a monitoring system is needed
to manage the system effectively. Sensors are located across multiple grid do-
mains to monitor local systems. Through the peer-to-peer network of a moni-
toring system, it is possible to see the representative sensor’s summarized infor-
mation as well as the specific local machine’s status with a direct connection.
Locally, the representative sensor maintains the status of its domain machines in
which sensors also exist for each target machine in slave mode. To find out the
appropriate sensor to be contacted, visPerf sends a query to the MDS (Monitor
Directory Service)5 (Fig. 4a) or to a local sensor with a unique domain name
(e.g. UT-ICL6). When a local representative sensor is about to start service, the
monitor registers itself with the specified MDS. When the user’s visPerf uses the
local monitor, the local sensor connected by the user forwards the query to the
5 It’s not the MDS of Globus.
6 It is not the Internet domain name, but one managed by the monitor system.



240 D.W. Lee, J.J. Dongarra, and R.S. Ramakrishna

MDS. The MDS returns the host name, its network port number, and the type
of the target remote sensor. Because the sensor can be a representative sensor of
a local domain, the type of the sensor is needed to determine its functionality.
With the response from the query, visPerf can directly contact the local sensor
to get its status.

3.4 Multiple Access Points: Monitor Proxy

For security, most organizations introduce a network firewall system as their
front-end. In this case, it is impossible to connect to a local sensor directly from
outside the network except for a secure inbound network port7. In addition,
most local cluster systems use an internal network address scheme (e.g. private
IP address or NAT) due to the lack of IP addresses for their working nodes
except an exposed node connected to the Internet. This also makes it difficult
for a monitoring system to connect to a local sensor from outside directly. Due to
these reasons, we introduced a ”Monitor Proxy” to support a secure connection
from outside a network. The monitor proxy has two functions: (i) Delegate a
connection request to a local sensor through a representative sensor that uses
HTTP tunnelling, and (ii) Provide a connection proxy through a representative
sensor. Both methods (i) and (ii) are applied to connect from outside the firewall.
In case of a private IP network (or NAT), method (i) is applied to connect from
outside the network. If a local sensor is not able to connect to an outside network,
it has to use a kind of ”gateway host” of its cluster or grid. If the representative
sensor is located in the exposed node, it can create a connection on behalf of
the inside sensor. The right side of Fig. 4b illustrates this situation. For security
against a malicious connection, we use the md5 authentication method.

4 Case Study: visPerf for NetSolve

As an example of visPerf, we present the customized monitor for the NetSolve
grid middleware8 It provides remote access to computational resources includ-
ing hardware and software and it supports different architectures and operating
systems. NetSolve provides blocking and non-blocking calls to a problem on an
available server. It also offers simultaneous multiple calls such as farming calls9.
We can view the parallelism of NetSolve using our monitoring system. To view
the interactions of a system, we have to prepare a log filter that is used for re-
fining a specific system’s log into a form of visPerf as mentioned in Sect. 3.1. To
track the sequence of a NetSolve call, we added new logs to the NetSolve system,
which are small modifications to the source code of NetSolve. This is just for
completing visualization of visPerf. The parallelism of non-blocking calls can not
7 e.g. SSH, HTTP port and so forth.
8 The NetSolve project [2] is being developed at the Innovative Computing Laboratory

of the University of Tennessee Computer Science Department.
9 A user’s data is divided into independent parallel NetSolve calls to use computing

resources simultaneously



visPerf: Monitoring Tool for Grid Computing 241

be shown because there is no log type to indicate the end of a NetSolve call.
In addition to this log indicating the sequence of a NetSolve call, this log filter
parses performance notification logs. Figure 5 (left) shows a snapshot of a user’s
problem being submitted between client application and server through one cen-
tral NetSolve agent of a production grid, which occured during the middle of a
NetSolve testing program (Test of current release of NetSolve 1.4). In addition
to this interaction map, users can investigate a specific host using visPerf as in
Fig. 5 (right). Figure 6 illustrates the performance fluctuation of a machine’s
CPU and disk I/O.

Fig. 5. Visual presentation: interaction map of NetSolve (left), performance graph
(right): CPU workload (red bar) and I/O workload(blue bar)

Fig. 6. Sensing local machine’s CPU and I/O performance

5 Related Work

Globus HBM [10] is a monitor facility to detect faults of a computing resource
involved in Globus. It checks the status of a target machine and reports it to a
higher-level collector machine. GridMonitor Java Applet [3] is a kind of monitor
for Globus system. It works by displaying the grid information and server status
for all sites including Globus MDS. JAMM [11] is an agent-based monitoring
system for grid environments that can automate the execution of monitoring



242 D.W. Lee, J.J. Dongarra, and R.S. Ramakrishna

sensors and the collection of event data. It supports not only the system’s gen-
eral performance including network and CPU workload, but also application
sensors that are embedded inside applications to notify an overload by thresh-
old variables. It is a type of a system that collects performance information of
the grid environments. The difference from our work is that visPerf is designed
for monitoring activities using grid middleware dependent information via direct
and indirect interfaces. Our system works by visualizing interactions of the work-
ing system and showing useful information on the system including performance
information in a simple, practical manner.

6 Conclusion and Future Work

This paper presented visPerf as a monitoring tool for grid middleware to show
the running activities and performance information. This monitoring tool will
be improved to serve as a more general monitoring system to support different
types of grid middleware by adding new sensor functions and log filters. At the
same time, using this underlying networked sensing system, we will attempt to
make this monitor tool a useful information provider.

Acknowledgments. This work has been supported by the BK21 program in
K-JIST, South Korea and the Innovative Computing Laboratory (ICL) and in
part by the National Science Foundation grant NSF ACI-9876895.

References

1. James C. French Alfred C. Weaver Paul F. Reynolds Jr. Andrew S. Grimshaw,
William A. Wulf. Legion: The next logical step toward a nationwide virtual com-
puter. Technical Report CS-94-20, Department of Computer Science, University
of Virginia, Charlottesville, Virginia, USA, June 1994.

2. D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi, and
S. Vadhiyar. Users’ Guide to NetSolve V1.4. Computer Science Dept. Technical
Report CS-01-467, University of Tennessee, Knoxville, TN, July 2001.

3. Mark Baker and Garry Smith. Gridrm: A resource monitoring architecture for the
grid. In Springer-Verlag, LNCS (2536), page 268 ff, 2002.

4. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115–128, Summer 1997.

5. SInRG (Scalable Intracampus Research Grid). http://icl.cs.utk.edu/sinrg/.
6. Carl Carl Kesselman (ed) Ian Foster (ed). The Grid : Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann, 1998.
7. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor : A hunter of idle workstations.

In 8th International Conference on Distributed Computing Systems (IEEE), pages
104–111, Washington D.C, June 1988.

8. Nelson Minar. Distributed systems topologies. http://www.openp2p.com.
9. Anh Nguyen-Tuong. Integrating fault-tolerant techniques in grid application. Com-

puter Science Dept. Dissertation, University of Virginia, Virginia, Auguest 2000.

http://icl.cs.utk.edu/sinrg/
http://www.openp2p.com


visPerf: Monitoring Tool for Grid Computing 243

10. P. Stelling, I. Foster, C. Kesselman, C.Lee, and Gregor von Laszewski. A Fault
Detection Service for Wide Area Distributed Computations. In Proceedings of the
7th IEEE International Symposium on High Performance Distributed Computing,
pages 268–278, Chicago, IL, 28-31 July 1998.

11. B. Tierney, B. Crowley, D. Gunter, J. Lee, and M. Andrew Thompson. A monitor-
ing sensor management system for grid environments. Cluster Computing Journal,
4, 2001.

12. Job B. Weissman. Fault tolerant wide-area parallel computing. 2000. Proceedings
of the International Parallel and Distributed Computing Symposium.

13. XMLRPC. http://www.xmlrpc.com.

http://www.xmlrpc.com

	Introduction
	Support for Grid Computing 
	Problems
	Requirements

	Monitoring System's Design Approach 
	Local Monitor: {itshape visSensor}
	Managing and Presenting Monitored Information: {itshape visPerf}
	Peer-To-Peer Monitor Network
	Multiple Access Points: Monitor Proxy

	Case Study: visPerf for NetSolve
	Related Work
	Conclusion and Future Work

