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Abstract. It is a common requirement to build a 2D map of a 3D virtual scene 
for path planning, but it is difficult or tedious. So we propose a multiple-level 
grid algorithm to solve the problem. The original idea lies in the new method 
on distinguishing a grid unit's accessibility. We argue for an approach by em-
ploying two navigating lines, which are right-angle intersection and stand for 
the unit's accessibility in four directions. Moreover, another advantage of it is 
to dynamically divide the virtual scene into different sizes of grids at different 
precisions. With these multi-precision grids, we can approach objects at any 
granularity. Lastly, experiments are performed to test the effectiveness of the 
algorithm. 

1   Introduction 

Recent advances in graphic engines and software tools have facilitated the develop-
ment of visual interfaces based on 3D virtual environments (VEs) [1]. These inter-
faces use interactive 3D graphics to represent visual and spatial information and allow 
natural interaction with direct object manipulation, such as VRML (Virtual Reality 
Modeling Language) [2]. People can get a lot of shared resource from the Internet to 
construct their own virtual world. Moreover, when a virtual scenic file is acquired, 
they usually also need assistant information, such as the scenic 2D map, for imbed-
ding and navigating our own virtual objects. Unfortunately, it happens rarely. A solu-
tion probably uses the projection image, the screen snapshot, from top view in the 
virtual environment browser. But this simple way comes with so much misunder-
standing that it is not reliable. For example, a room, which may be entered in, is dis-
played as impassable object in the top view projection image. To acquire a real 2D 
road map, this paper proposes a Multiple-level Grid Algorithm. 

2  Related Work 

Let us briefly talk about some previous work on this problem. To draw virtual scenic 
map is similar to drawing real world map. Many researches had been completed on 
how to get these practical maps [3,4,5]. The aerial survey mapping is efficient way 
for large area survey like the top view projection method in our virtual environment. 
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Many advantages had been presented in document [6]. But this method is unsuitable 
for our problem, for so much redundant information acquired probably. For example, 
an image of the top view projection would show some area as road area because of no
objects here. But in fact, these areas maybe are embraced by other obstacles and can 
never be arrived at. We only want to know where can be reached in a virtual scene. 
The superabundance can only mislead us. To ransack a scene to find a road map be-
longs to the traversal problem. Many traversal algorithms had been proposed in the 
graph theory. Document [7] is a good reading material for this problem. Koucky 
proposed a universal traversal approach [8]. In some documents [9,10], this problem 
is called ‘terrain acquisition’. Gonzalez had proposed a complementary regions algo-
rithm for such a surface filling [11]. But their approaches are limited at precision for 
relying on the size of a gauge, which may be a mobile robot or a block. Our problem 
has partial similarity with the all of above, and its special attributes are described in 
next section. 

Our method is based on the simulation of user’s behavior. When a user is navigat-
ing in a virtual scene from a browser, such as a VRML browser, the interactive device 
is commonly a keyboard. The OS receives user input and only sends some keyboard 
messages to the browser. For example, Up-key message stands for user’s idea of 
‘advancing’, Left-key message means ‘turning left’, and so on. Therefore, we can 
substitute for OS to send same messages to the browser to simulate user behavior. 
Our program simulates a user movement in the virtual scene. With the help of em-
bedded JAVA applet in the VRML file, the map recorder can receive the motion data 
of the user’s viewpoint. Figure 1 illustrates this architecture. So the trail of user’s 
viewpoint stands for the passage. How to compose a map with these points is our 
kernel problem. Because we have little interest in the difference of the motion trail on 
altitude, such difference is neglected and planar data are only kept, such as recorded x, 
z coordinates and neglected y (means height in the VRML). 

 
 

Si mul at e a user ' s
i nput  i nf or mat i on
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Fig. 1. The way for getting the accessible data 
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3 Virtual Terrain Acquisition Problem 

In this section, we present the virtual terrain acquisition problem of the map in the 
virtual scene. In a 3D virtual scene, we are asked for to get out its 2D planar path map. 
Our problem is different from other path-plan problems [12,13], because the scenic 
environment is almost unknown and we need not only get out where are obstacles or 
roads, but must cover all position in it. The scenic information is very little except the 
scenic scope.  While our avatar is walking, the data of viewpoint position can be 
acquired. The data don’t stand for a set of small regions, but a set of sample points, 
which are infinitesimal. Due to the difficulty of walking on every point in the scenic 
map, it is impossible to use exhaustive approach to distinguish an obstacle or a road. 
So we propose a multiple-level grid algorithm to deal with it. 

3.1 Problem Formulation 

We assume that if a point x  is of a road, its neighborhood )(xΓ , which is tightly 
close to it, is also of the road. Firstly, we divide the map into many small rectangles 
or blocks, which are of the same size. Figure 2 illustrates that. 

Before we formulate the problem, let us define the following notation: 

•   =n Number of small rectangle in a dividing grid. 
•   =ia The ith  small rectangle in a dividing grid where ni ,...,2,1= .  

If the n  is big enough, in other words, there are enough many small rectangles di-
vided from a scenic map, we can think the rectangle region as a road or an obstacle 
on the condition that whether or not a viewpoint can step into it from its adjacent 
rectangles. Here we define the neighborhood )(xΓ  of x , any point in the scenic 
map, as the small rectangle ia : 

ai

 

Fig. 2. The dividing grid for a map 

If )(,..,1, ∞→=∈ nniax i and x  of a road, then ia  is of a road, and vice 
versa. There are 4 edges in ia  — Up, Down, Left and Right. We statistically know if 
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a user can steps into a small rectangle ia  in these four directions along with the mid-
points of every edge, then, ia  is almost of a road. So we simplify the determinant 
with a definite precision. Figure 3 illustrates some samples to tell which rectangle 
region is a road or an obstacle. 
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Fig. 3. Samples for describing the rectangle property of accessibility 

 
Then, we use a graph notation to present a scenic map. Given a graph 

),( EVG = ,V represents the set of small rectangles in the dividing grid; E  repre-
sents the set of edges such that an edge Ee ji ∈,  represents that the small rectangle 

ia
 is next to ja . Because the number of small rectangles adjacent to ia  is 4 at most, 

we can construct such a graph like Fig. 4. The problem is converted to solve the ac-
cessibility of every edge in graph G . 
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Fig. 4. Transferring from a grid to a graph 

3.2 Random Walk Approach 

One way to work out every small rectangles state is by random walk approach, that is, 
given n  rectangles of the whole grid, which is a n-vertices graph, and then the view-
point can start at any point and jump to any edge at every node. Let n  denote the 
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total linked edges for detecting every node; thus, here is n4 . If scenic scope is 
100*100 and the required precision is 0.1, so 610=n , the random walk approach 
impossibly reach our anticipation. 

3.3 Multiple-Level Grid Algorithm 

On the above, we propose the multiple-level grid algorithm (MLG) to solve this 
virtual terrain acquisition problem. 

We need define some data packets: 

• Edge=(Vi, Vj, Passed)  An Edge is a triple, where Vi, Vj ∈  V and Passed 
stands for whether we can enter in the rectangle aj, which the vertex Vj corre-
spond to, from ai (which the vertex Vi correspond to). The optional value of 
Passed is among ‘T’(true)�‘F’ (false) and ‘U’(untouched). Because the road is 
two directions, if x=( Vi,Vj,Passed) and y=( Vi,Vj,Passed), then the Passed(X) 
= Passed(Y). 

• Node=(Vi,Front_Edge,Back_Edge,Left_Edge, Right_Edge ,Status)  An Node 
includes seven elements, where Vi ∈  V; Front_Edg, Back_Edge, Left_Edge, 
Right_Edge are the type of Edge. Front_Edge stands for passing-through na-
ture between Vi and its adjacent vertex in the up direction, and Down_Edge is 
for the down direction, the third for left, the fourth for the right; the Status is 
for whether the rectangle is region of a road or an obstacle, which value is 
among ‘R’(road ), ‘O’(obstacle), ‘NFI’( need detail information), or 
‘U’(undone). 

We also need define some functions: 

• Passed(Edge) It get result from a Edge to tell if the Edge can be pass through. 
• Status(Node)  It get result from a Node to tell whether the rectangle is of a 

road, an obstacle or other conditions. 
 
Multiple-Level Grid Algorithm: 
1. begin 
2. Define the max value R for the resolution and initial resolution Rr <0 , and itera-

tion K = 1; 
3. Create a global stack M to contain the need-checking region; 
4. Let 0,1 == ir  and push the whole scenic map as a graph, denoted by 0A , and a 

start point 0s into stack M; 
5. while ( Rr < ){ 
6.      0,,1 0 =⋅=+= jrrrii ; 
7.      while (Stack M is not empty ){ 
8.         Get out a graph jA  from the stack M; 
9.   Use the grid-covering algorithm to deal with jA  at the resolution r  and start   

point is , then work out the status for every node of the graph.; 
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10. 1+= jj ;} 

11.    0=j ; 

12. For every node of all graphs { 
Uses the adjacent-edge rule to check them.; 
 If a node status is NFI  then 

{ 1+= jj , mark it with jA  and push it and a point is ( ii As ∈ ) into  stack M;} 

  }   } 
13. Integrate all nodes of every level to compose a whole road map A for the scene; 

14. Scan all divided smallest rectangles in A to find a new start point Ks . 

 { If  found( s ) then  
let Kss =0 and K=K+1,  goes to step 4 

Else 
                    final road map A is result; 

       /* The smallest rectangle must be on border including the new start point. */ } 
15. end 

 
The multiple-level grid algorithm is iterative, the complexity in an iteration cycle is 

)(nO . The algorithm has two key components, namely, 1) the grid-covering algo-
rithm (GC), and 2) the adjacent edge rule (AER). The GC algorithm uses a dived-
and-conquer approach to filter out road blocks and obstacle blocks. The AER is based 
on the experiential assumption. In what follows, we describe each of these two com-
ponents. 

3.3.1   Grid Covering (GC) Algorithm 
The main idea of the grid-covering algorithm is to divide the scene of a virtual envi-
ronment into grid array ),...,2,1,( njAaA j =∈  and then to construct the corre-
sponding graph ),( EVG = . In the grid- covering algorithm, we first set the resolu-
tion r and a start position 0s , which are inputted from outside, for this level grid. 

Grid Covering Algorithm: 
1. begin 
2. According to the scenic size and the resolution r , divide the scene with a set of 

small rectangles ),...,2,1( nia i = ; 
3. According to ai, construct a set of vertexes to compose an array, denoted by V, and 

create a new array of Node, denoted by M . The number of elements in V  is n , 
and same to array M . iV  of ][ pM  )...,2,1( np =  is belong to V ; 

4. Set initial value for array M ; 
   /*Set Status of )...,2,1]([ nppM =  with ‘U’;*/ 

5. From start vertex 0V ( It’s a seed ), which includes the start position 0s . Let 
0VV curr = ; 

6. From Front_Edge to Right_Edge of currV , check its Edge element X( X∈  
Front_Edge, Back_Edge,Left_Edge,Right_Edge). 
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If Passed(X)=U then goes to step 6, or goes to step 8; 
7. Check user can enter in currV ’s neighbor nextV  through the Edge X. If can not, set 

variable Passed of Edge X and nextV ’s corresponding Edge element with value ‘F’, 
and goes to step 5; set variable Passed of Edge X and nextV ’s corresponding Edge 
element with value ‘T’; 

8. Let nextcurr VV = , goes to step 4; 
9. If Edge X is Right_Edge, backwards to the previous Node preV . Let precurr VV =  

and goes to step 9, else goes to step 4; 
10. If 0VVcurr = , goes to step 10, or goes to step 4; 
11. end. 
   
 The purpose of the grid-covering algorithm is to get all real connections of every 
block in the grid. In the view of graph, we want to produce a connected graph so that 
we can perform the checking step by the adjacent-edge rule. This algorithm can check 
every node, which stands for the accessible area. 

3.3.2   Adjacent-Edge Rule 
The idea of the adjacent-edge rule is described as follows: 

In the view of graph, if a node iV  can be reached from all the Ee ji ∈, , we think 
that it stands for a road area; if just from some Ee ji ∈, , we think it need-checking 
with detail information; if from none, it must be an obstacle area. We name the 
method as an adjacent-edge rule. Figure 5 illustrates these instances. 

The function Status(Node) is based on above. After the implementation of GC al-
gorithm, we set nodes state obeyed the adjacent-edge rule. 

3.3.3   The Complexity of the Multiple-Level Grid Algorithm 
The multiple-level grid algorithm is a recursive approach based on the GC and AER. 
GC algorithm makes a viewpoint move in the scenic graph along with a definite route. 
The most time cost exists in walking away from all edges. The dropping back step 
needs reset the viewpoint’s position, which also shares cost, and then sometimes the 
viewpoint need backward many nodes to find a new acceptable edge. For discussing 
the complexity of our algorithm, we define these notations as following: 
 

• kkk qpN ×=   This means in the k th level grid, the whole region is divided 
into kp rows and kq  columns of rectangles. 

• kω  = The average cost of passing through an edge between two nodes in the 
k th level grid. 

• kϕ  = The average cost of the dropping back step in the k th level grid. 
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Fig. 5. (a) That all connections of a node are ‘T’ means it is a road area. (b) That no connec-
tions of a node are ‘T’ means it is an obstacle area. (c) That there are different statuses among 
connections of a node means it is NFI (need further information for checking). (d) That all 
connections of a node are ‘U’(untouched) means that it is isolated as an obstacle in the smallest 
grid, or is unknown in other level grids 

Lemma 1. The complexity of Grid Covering Algorithm is )(NO . 

Proof. In the ith level grid, the all edges is 12224 +−− kkk qpN . When a colli-
sion happens, we need reset viewpoint to an acceptable edge. The number of reset 
times is same as the number of edges at most. The whole cost is based on the follow-
ing formula: 

)12224()( +−−×+= kkkkkk qpNC ϕω  (1) 

Therefore, the complexity of Grid Covering Algorithm is )( kNO . 

 GC algorithm is recursively used in the multiple-level grid algorithm. Therefore, the 
complexity of the multiple-level grid algorithm is )(∏ kNO  at most. As we known, 

nN k =∏  (2) 

So the complexity of an iteration cycle in the multiple-level grid algorithm is )(nO ; 
and in the worst case, the complexity is )( 2nO , which needs n  iteration cycles. If 
we only check the untouched Edges in every iteration cycle with the help of status 
marks, the complexity will be decreased to )(nO . In fact, because of many similar 
areas, only a few rectangles need to be divided into small enough pieces. The conver-
gence speed of our algorithm is higher than theoretic one. 

4 Experiments 

In this section, we select the VRML 97 and Cortona VRML Client 4.0 [14] on HP 
workstation x4000 as our test-bed. To evaluate the algorithm discussed in the previ-
ous section, we apply it to the different scales of virtual environment. For the small 
virtual scene, since the scenic space is manageable, we can give the comparison of the 
behavior of our algorithm with a random approach. In the large virtual scene, we 
compare the convergence speed of it with different number and size of obstacles. 
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4.1   Experiment 1: Small Virtual Scene 

In this experiment, we use a small virtual scene with a dimension 1*1. The precision 
is defined as 0.1, and the obstacles are five   boxes. Because the random walk ap-
proach is not convergent, we only describe the access percentage of the road area. 
The curve of random approach is very rough and its searching speed is slow because 
of a lot of repetitive access. By contrast, our MLG algorithm accesses every site faster 
in the virtual scene, and the curve is smoother. From the two trend curves, we found 
that our algorithm is so stable and efficient. Figure 7 list the different effect of our 
algorithm and random walk approach. The curve of the random approach is convex. 
With time elapsing, the curve is approximate to the end line (at 100%) infinitely. The 
approach works out the data of road area fast at the beginning, but later it is running 
more and more slowly. The curve of our MLG algorithm is concave and convergence. 
It arrives at the end line stably. 
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Fig. 6. The comparison of walk effects between two approaches in a small virtual scene 

4.2    Experiment 2: Large Virtual Scene 

Here, we use a large virtual scene with a dimension 100*100. The precision is also 
defined as 0.1. We vary the number and size of obstacles to compare the behavior of 
the multiple-level grid algorithm. In Fig. 7, we apply MLG as two levels of grid to a 
virtual scene. The horizontal axis stands for different ratio, which is 10-4-104, between 
n1 and n2. (n1 is the number of rectangles in the first level grid;  n2 is the number of 
rectangles in the first level grid. ) The left vertical axis stands for its convergence time 
and the right vertical axis stands for accuracy ratio. The accuracy curve fluctuates in a 
limited range (96-100%). By contrast, the convergence-time curve changes much 
more (219-1250s). We recommend that a suitable r be in [10,100].  
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Fig. 7. The behavior of MLG algorithm in different large virtual scene 

5   Conclusion and Future Work 

This paper deals with the problem extracting the 2D planar map from 3D virtual 
scene to facilitate using the shared source of the virtual reality scene on Internet. An 
efficient algorithm is presented and experiments are carried out to testify its effi-
ciency. We also adapt the algorithm to parallel domain. The algorithm is good at the 
convergence and reliable to versatile scenes with the acceptable recognition accuracy.  

But our method only thinks about the same ground plane without caring for the lit-
tle difference on the altitude, and we get the rough data of a map. Further researches 
on this project are how to composite a useful map with them and how to navigate the 
intelligent robot in a virtual scene with the map. The current research is good test-bed 
for robots navigate approach. 
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