

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 264–274, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Multiple-Level Grid Algorithm for Getting 2D Road
Map in 3D Virtual Scene

Jiangchun Wang1, Shensheng Zhang1, and Jianqiang Luo1

1CIT Lab, Department of Computer Science and Engineering
Shanghai Jiao Tong University, P.R. China

scott751111@sjtu.edu.cn

Abstract. It is a common requirement to build a 2D map of a 3D virtual scene
for path planning, but it is difficult or tedious. So we propose a multiple-level
grid algorithm to solve the problem. The original idea lies in the new method
on distinguishing a grid unit's accessibility. We argue for an approach by em-
ploying two navigating lines, which are right-angle intersection and stand for
the unit's accessibility in four directions. Moreover, another advantage of it is
to dynamically divide the virtual scene into different sizes of grids at different
precisions. With these multi-precision grids, we can approach objects at any
granularity. Lastly, experiments are performed to test the effectiveness of the
algorithm.

1 Introduction

Recent advances in graphic engines and software tools have facilitated the develop-
ment of visual interfaces based on 3D virtual environments (VEs) [1]. These inter-
faces use interactive 3D graphics to represent visual and spatial information and allow
natural interaction with direct object manipulation, such as VRML (Virtual Reality
Modeling Language) [2]. People can get a lot of shared resource from the Internet to
construct their own virtual world. Moreover, when a virtual scenic file is acquired,
they usually also need assistant information, such as the scenic 2D map, for imbed-
ding and navigating our own virtual objects. Unfortunately, it happens rarely. A solu-
tion probably uses the projection image, the screen snapshot, from top view in the
virtual environment browser. But this simple way comes with so much misunder-
standing that it is not reliable. For example, a room, which may be entered in, is dis-
played as impassable object in the top view projection image. To acquire a real 2D
road map, this paper proposes a Multiple-level Grid Algorithm.

2 Related Work

Let us briefly talk about some previous work on this problem. To draw virtual scenic
map is similar to drawing real world map. Many researches had been completed on
how to get these practical maps [3,4,5]. The aerial survey mapping is efficient way
for large area survey like the top view projection method in our virtual environment.

Multiple-Level Grid Algorithm for Getting 2D Road Map in 3D Virtual Scene 265

Many advantages had been presented in document [6]. But this method is unsuitable
for our problem, for so much redundant information acquired probably. For example,
an image of the top view projection would show some area as road area because of no
objects here. But in fact, these areas maybe are embraced by other obstacles and can
never be arrived at. We only want to know where can be reached in a virtual scene.
The superabundance can only mislead us. To ransack a scene to find a road map be-
longs to the traversal problem. Many traversal algorithms had been proposed in the
graph theory. Document [7] is a good reading material for this problem. Koucky
proposed a universal traversal approach [8]. In some documents [9,10], this problem
is called ‘terrain acquisition’. Gonzalez had proposed a complementary regions algo-
rithm for such a surface filling [11]. But their approaches are limited at precision for
relying on the size of a gauge, which may be a mobile robot or a block. Our problem
has partial similarity with the all of above, and its special attributes are described in
next section.

Our method is based on the simulation of user’s behavior. When a user is navigat-
ing in a virtual scene from a browser, such as a VRML browser, the interactive device
is commonly a keyboard. The OS receives user input and only sends some keyboard
messages to the browser. For example, Up-key message stands for user’s idea of
‘advancing’, Left-key message means ‘turning left’, and so on. Therefore, we can
substitute for OS to send same messages to the browser to simulate user behavior.
Our program simulates a user movement in the virtual scene. With the help of em-
bedded JAVA applet in the VRML file, the map recorder can receive the motion data
of the user’s viewpoint. Figure 1 illustrates this architecture. So the trail of user’s
viewpoint stands for the passage. How to compose a map with these points is our
kernel problem. Because we have little interest in the difference of the motion trail on
altitude, such difference is neglected and planar data are only kept, such as recorded x,
z coordinates and neglected y (means height in the VRML).

Si mul at e a user ' s
i nput i nf or mat i on
by post i ng OS
messages

A Vi r t ual Scene

Tr acki ng ser ver
r ecor ds t he t r ai l of
t he user ' s vi ewpoi nt

Fig. 1. The way for getting the accessible data

266 J. Wang, S. Zhang, and J. Luo

3 Virtual Terrain Acquisition Problem

In this section, we present the virtual terrain acquisition problem of the map in the
virtual scene. In a 3D virtual scene, we are asked for to get out its 2D planar path map.
Our problem is different from other path-plan problems [12,13], because the scenic
environment is almost unknown and we need not only get out where are obstacles or
roads, but must cover all position in it. The scenic information is very little except the
scenic scope. While our avatar is walking, the data of viewpoint position can be
acquired. The data don’t stand for a set of small regions, but a set of sample points,
which are infinitesimal. Due to the difficulty of walking on every point in the scenic
map, it is impossible to use exhaustive approach to distinguish an obstacle or a road.
So we propose a multiple-level grid algorithm to deal with it.

3.1 Problem Formulation

We assume that if a point x is of a road, its neighborhood)(xΓ , which is tightly
close to it, is also of the road. Firstly, we divide the map into many small rectangles
or blocks, which are of the same size. Figure 2 illustrates that.

Before we formulate the problem, let us define the following notation:

• =n Number of small rectangle in a dividing grid.
• =ia The ith small rectangle in a dividing grid where ni ,...,2,1= .

If the n is big enough, in other words, there are enough many small rectangles di-
vided from a scenic map, we can think the rectangle region as a road or an obstacle
on the condition that whether or not a viewpoint can step into it from its adjacent
rectangles. Here we define the neighborhood)(xΓ of x , any point in the scenic
map, as the small rectangle ia :

ai

Fig. 2. The dividing grid for a map

If)(,..,1, ∞→=∈ nniax i and x of a road, then ia is of a road, and vice
versa. There are 4 edges in ia — Up, Down, Left and Right. We statistically know if

Multiple-Level Grid Algorithm for Getting 2D Road Map in 3D Virtual Scene 267

a user can steps into a small rectangle ia in these four directions along with the mid-
points of every edge, then, ia is almost of a road. So we simplify the determinant
with a definite precision. Figure 3 illustrates some samples to tell which rectangle
region is a road or an obstacle.

Road
OK

OK

OK

OK Need
det ai l

i nf o

OK

NO

OK

OK Obst -
acl e

NO

NO

NO

NO

Fig. 3. Samples for describing the rectangle property of accessibility

Then, we use a graph notation to present a scenic map. Given a graph

),(EVG = ,V represents the set of small rectangles in the dividing grid; E repre-
sents the set of edges such that an edge Ee ji ∈, represents that the small rectangle

ia
 is next to ja . Because the number of small rectangles adjacent to ia is 4 at most,

we can construct such a graph like Fig. 4. The problem is converted to solve the ac-
cessibility of every edge in graph G .

an

a1

Lef t

Up

Down

Ri ght

V1

Vn

Fig. 4. Transferring from a grid to a graph

3.2 Random Walk Approach

One way to work out every small rectangles state is by random walk approach, that is,
given n rectangles of the whole grid, which is a n-vertices graph, and then the view-
point can start at any point and jump to any edge at every node. Let n denote the

268 J. Wang, S. Zhang, and J. Luo

total linked edges for detecting every node; thus, here is n4 . If scenic scope is
100*100 and the required precision is 0.1, so 610=n , the random walk approach
impossibly reach our anticipation.

3.3 Multiple-Level Grid Algorithm

On the above, we propose the multiple-level grid algorithm (MLG) to solve this
virtual terrain acquisition problem.

We need define some data packets:

• Edge=(Vi, Vj, Passed) An Edge is a triple, where Vi, Vj ∈ V and Passed
stands for whether we can enter in the rectangle aj, which the vertex Vj corre-
spond to, from ai (which the vertex Vi correspond to). The optional value of
Passed is among ‘T’(true)�‘F’ (false) and ‘U’(untouched). Because the road is
two directions, if x=(Vi,Vj,Passed) and y=(Vi,Vj,Passed), then the Passed(X)
= Passed(Y).

• Node=(Vi,Front_Edge,Back_Edge,Left_Edge, Right_Edge ,Status) An Node
includes seven elements, where Vi ∈ V; Front_Edg, Back_Edge, Left_Edge,
Right_Edge are the type of Edge. Front_Edge stands for passing-through na-
ture between Vi and its adjacent vertex in the up direction, and Down_Edge is
for the down direction, the third for left, the fourth for the right; the Status is
for whether the rectangle is region of a road or an obstacle, which value is
among ‘R’(road), ‘O’(obstacle), ‘NFI’(need detail information), or
‘U’(undone).

We also need define some functions:

• Passed(Edge) It get result from a Edge to tell if the Edge can be pass through.
• Status(Node) It get result from a Node to tell whether the rectangle is of a

road, an obstacle or other conditions.

Multiple-Level Grid Algorithm:
1. begin
2. Define the max value R for the resolution and initial resolution Rr <0 , and itera-

tion K = 1;
3. Create a global stack M to contain the need-checking region;
4. Let 0,1 == ir and push the whole scenic map as a graph, denoted by 0A , and a

start point 0s into stack M;
5. while (Rr <){
6. 0,,1 0 =⋅=+= jrrrii ;
7. while (Stack M is not empty){
8. Get out a graph jA from the stack M;
9. Use the grid-covering algorithm to deal with jA at the resolution r and start

point is , then work out the status for every node of the graph.;

Multiple-Level Grid Algorithm for Getting 2D Road Map in 3D Virtual Scene 269

10. 1+= jj ;}

11. 0=j ;

12. For every node of all graphs {
Uses the adjacent-edge rule to check them.;
 If a node status is NFI then

{ 1+= jj , mark it with jA and push it and a point is (ii As ∈) into stack M;}

 } }
13. Integrate all nodes of every level to compose a whole road map A for the scene;

14. Scan all divided smallest rectangles in A to find a new start point Ks .

 { If found(s) then
let Kss =0 and K=K+1, goes to step 4

Else
 final road map A is result;

 /* The smallest rectangle must be on border including the new start point. */ }
15. end

The multiple-level grid algorithm is iterative, the complexity in an iteration cycle is

)(nO . The algorithm has two key components, namely, 1) the grid-covering algo-
rithm (GC), and 2) the adjacent edge rule (AER). The GC algorithm uses a dived-
and-conquer approach to filter out road blocks and obstacle blocks. The AER is based
on the experiential assumption. In what follows, we describe each of these two com-
ponents.

3.3.1 Grid Covering (GC) Algorithm
The main idea of the grid-covering algorithm is to divide the scene of a virtual envi-
ronment into grid array),...,2,1,(njAaA j =∈ and then to construct the corre-
sponding graph),(EVG = . In the grid- covering algorithm, we first set the resolu-
tion r and a start position 0s , which are inputted from outside, for this level grid.

Grid Covering Algorithm:
1. begin
2. According to the scenic size and the resolution r , divide the scene with a set of

small rectangles),...,2,1(nia i = ;
3. According to ai, construct a set of vertexes to compose an array, denoted by V, and

create a new array of Node, denoted by M . The number of elements in V is n ,
and same to array M . iV of][pM)...,2,1(np = is belong to V ;

4. Set initial value for array M ;
 /*Set Status of)...,2,1]([nppM = with ‘U’;*/

5. From start vertex 0V (It’s a seed), which includes the start position 0s . Let
0VV curr = ;

6. From Front_Edge to Right_Edge of currV , check its Edge element X(X∈
Front_Edge, Back_Edge,Left_Edge,Right_Edge).

270 J. Wang, S. Zhang, and J. Luo

If Passed(X)=U then goes to step 6, or goes to step 8;
7. Check user can enter in currV ’s neighbor nextV through the Edge X. If can not, set

variable Passed of Edge X and nextV ’s corresponding Edge element with value ‘F’,
and goes to step 5; set variable Passed of Edge X and nextV ’s corresponding Edge
element with value ‘T’;

8. Let nextcurr VV = , goes to step 4;
9. If Edge X is Right_Edge, backwards to the previous Node preV . Let precurr VV =

and goes to step 9, else goes to step 4;
10. If 0VVcurr = , goes to step 10, or goes to step 4;
11. end.

 The purpose of the grid-covering algorithm is to get all real connections of every
block in the grid. In the view of graph, we want to produce a connected graph so that
we can perform the checking step by the adjacent-edge rule. This algorithm can check
every node, which stands for the accessible area.

3.3.2 Adjacent-Edge Rule
The idea of the adjacent-edge rule is described as follows:

In the view of graph, if a node iV can be reached from all the Ee ji ∈, , we think
that it stands for a road area; if just from some Ee ji ∈, , we think it need-checking
with detail information; if from none, it must be an obstacle area. We name the
method as an adjacent-edge rule. Figure 5 illustrates these instances.

The function Status(Node) is based on above. After the implementation of GC al-
gorithm, we set nodes state obeyed the adjacent-edge rule.

3.3.3 The Complexity of the Multiple-Level Grid Algorithm
The multiple-level grid algorithm is a recursive approach based on the GC and AER.
GC algorithm makes a viewpoint move in the scenic graph along with a definite route.
The most time cost exists in walking away from all edges. The dropping back step
needs reset the viewpoint’s position, which also shares cost, and then sometimes the
viewpoint need backward many nodes to find a new acceptable edge. For discussing
the complexity of our algorithm, we define these notations as following:

• kkk qpN ×= This means in the k th level grid, the whole region is divided
into kp rows and kq columns of rectangles.

• kω = The average cost of passing through an edge between two nodes in the
k th level grid.

• kϕ = The average cost of the dropping back step in the k th level grid.

Multiple-Level Grid Algorithm for Getting 2D Road Map in 3D Virtual Scene 271

T

T

T

T

(a) (b)

F

F

F

F

(c)

T

F

T

T U

U

U

U

Road Obst acl e NFI UNKNOWN or Obst acl e(d)

Fig. 5. (a) That all connections of a node are ‘T’ means it is a road area. (b) That no connec-
tions of a node are ‘T’ means it is an obstacle area. (c) That there are different statuses among
connections of a node means it is NFI (need further information for checking). (d) That all
connections of a node are ‘U’(untouched) means that it is isolated as an obstacle in the smallest
grid, or is unknown in other level grids

Lemma 1. The complexity of Grid Covering Algorithm is)(NO .

Proof. In the ith level grid, the all edges is 12224 +−− kkk qpN . When a colli-
sion happens, we need reset viewpoint to an acceptable edge. The number of reset
times is same as the number of edges at most. The whole cost is based on the follow-
ing formula:

)12224()(+−−×+= kkkkkk qpNC ϕω (1)

Therefore, the complexity of Grid Covering Algorithm is)(kNO .

 GC algorithm is recursively used in the multiple-level grid algorithm. Therefore, the
complexity of the multiple-level grid algorithm is)(∏ kNO at most. As we known,

nN k =∏ (2)

So the complexity of an iteration cycle in the multiple-level grid algorithm is)(nO ;
and in the worst case, the complexity is)(2nO , which needs n iteration cycles. If
we only check the untouched Edges in every iteration cycle with the help of status
marks, the complexity will be decreased to)(nO . In fact, because of many similar
areas, only a few rectangles need to be divided into small enough pieces. The conver-
gence speed of our algorithm is higher than theoretic one.

4 Experiments

In this section, we select the VRML 97 and Cortona VRML Client 4.0 [14] on HP
workstation x4000 as our test-bed. To evaluate the algorithm discussed in the previ-
ous section, we apply it to the different scales of virtual environment. For the small
virtual scene, since the scenic space is manageable, we can give the comparison of the
behavior of our algorithm with a random approach. In the large virtual scene, we
compare the convergence speed of it with different number and size of obstacles.

272 J. Wang, S. Zhang, and J. Luo

4.1 Experiment 1: Small Virtual Scene

In this experiment, we use a small virtual scene with a dimension 1*1. The precision
is defined as 0.1, and the obstacles are five boxes. Because the random walk ap-
proach is not convergent, we only describe the access percentage of the road area.
The curve of random approach is very rough and its searching speed is slow because
of a lot of repetitive access. By contrast, our MLG algorithm accesses every site faster
in the virtual scene, and the curve is smoother. From the two trend curves, we found
that our algorithm is so stable and efficient. Figure 7 list the different effect of our
algorithm and random walk approach. The curve of the random approach is convex.
With time elapsing, the curve is approximate to the end line (at 100%) infinitely. The
approach works out the data of road area fast at the beginning, but later it is running
more and more slowly. The curve of our MLG algorithm is concave and convergence.
It arrives at the end line stably.

10

20

50

90

100

30

40

The per cent age of
 al l r oad poi nt s(%)

t (s)

100 200 300 400 500 600 700 800

70

80

60

0

t r end cur ve

r eal cur ve

(a) Random wal k

1 2 3 4 5 6 7 8 9

t (s)

0

10

20

30

40

50

60

70

80

90

100
The per cent age of

 al l r oad poi nt s(%)

10

t r end cur ve

r eal cur ve

(b) MLG wal k

Fig. 6. The comparison of walk effects between two approaches in a small virtual scene

4.2 Experiment 2: Large Virtual Scene

Here, we use a large virtual scene with a dimension 100*100. The precision is also
defined as 0.1. We vary the number and size of obstacles to compare the behavior of
the multiple-level grid algorithm. In Fig. 7, we apply MLG as two levels of grid to a
virtual scene. The horizontal axis stands for different ratio, which is 10-4-104, between
n1 and n2. (n1 is the number of rectangles in the first level grid; n2 is the number of
rectangles in the first level grid.) The left vertical axis stands for its convergence time
and the right vertical axis stands for accuracy ratio. The accuracy curve fluctuates in a
limited range (96-100%). By contrast, the convergence-time curve changes much
more (219-1250s). We recommend that a suitable r be in [10,100].

Multiple-Level Grid Algorithm for Getting 2D Road Map in 3D Virtual Scene 273

0 .0 00 1 0 .0 1 10 1 00 1 00 00

20 0

40 0

60 0

80 0

10 00

12 00

1 4 0 0

96

9 8

1 00

conver genve- t i me cur ve

accur acy cur ve
t (s) r (%)

n1/ n2

Fig. 7. The behavior of MLG algorithm in different large virtual scene

5 Conclusion and Future Work

This paper deals with the problem extracting the 2D planar map from 3D virtual
scene to facilitate using the shared source of the virtual reality scene on Internet. An
efficient algorithm is presented and experiments are carried out to testify its effi-
ciency. We also adapt the algorithm to parallel domain. The algorithm is good at the
convergence and reliable to versatile scenes with the acceptable recognition accuracy.

But our method only thinks about the same ground plane without caring for the lit-
tle difference on the altitude, and we get the rough data of a map. Further researches
on this project are how to composite a useful map with them and how to navigate the
intelligent robot in a virtual scene with the map. The current research is good test-bed
for robots navigate approach.

Acknowledgements. This work was supported by China National Science Founda-
tion under grant No: 59789502, and by the National High Technology Plan 863/
CIMS under the grant No: 863-511-030-007-9.

References

1. Tiziana Catarci, Thomas, “Using 3D and Ancillary Media to Train Construction Workers”,
Multimedia at Work, April 2002, pp. 88-92

2. http://www.cs.nps.navy.mil/people/faculty/capps/4473/
projects/VRML

3. Illert, A. “Automatic Digitization of Large Scale Maps”, Technical Papers, ACSM
ASPRS Annual Convention, 1991 (6)

4. Datta, A. and Parui, S.K., “A Robust Parallel thinning Algorithm for Binary Images”.
Pattern Recognition, 1994, Vol. 27, No. 9,

5. Krakiwsky, Edward J., Mueller, Ivan I., “Toward world surveying and mapping educa-
tion”. Report on the XIIIth North American surveying and mapping teachers conference,
ACSM-ASPRS Annual Convention, Vol. 2., 1991, pp. 160–169

274 J. Wang, S. Zhang, and J. Luo

6. Mayer, Helmut, “Automatic object extraction from aerial imagery – a survey focusing on
buildings”, Computer Vision and Image Understanding, 1999 Acad Press Inc., pp. 138–
149.

7. Aldous, D. and Fill, J.A., “Reversible Markov Chains and Random Walks on Graphs”,
http://www.stat.berkeley.edu/ users/aldous/book.html

8. Koucky, M., “Universal traversal sequences with backtracking”, Computational Complex-
ity, 16th Annual IEEE Conference, 2001, pp. 21–27.

9. Lurnelsky, V.J. and Mukhopadhyay, S., “Dynamic Path Planning on Sensor-Based Ter-
rain Acquisition”, IEEE Trans. on Robotics and Automation, Vol. 6, No 4,1990, pp. 462–
472.

10. Cao, Z.L., Huang, Y., and Hall E.L., “Region filling operations with random obstacle
avoidance for mobile robots”, Journal of Robotics Systems, Vol. 5, No. 2,1988, pp. 87–
102.

11. Gonzalez, E., Suarez, A., Moreno, C., and Artigue, F., “Complementary regions: a sur-
face filling algorithm”, IEEE International Conference, Vol. 1, 1996, pp. 909 –914

12. Alexopoulos, C, Griffin, P.M. “Path planning for a mobile robot”. IEEE Trans. on System,
Man, and Cybernetics, 1992, 22(2), pp. 318–322

13. Beom, H.B. “A sensor-based navigation for a mobile robot using fuzzy logic and rein-
forcement learning”. IEEE Trans on SMC. 1995, 25(3), pp. 464–477.

14. http://www.parallelgraphics.com

	1 Introduction
	2 Related Work
	3 Virtual Terrain Acquisition Problem
	3.1 Problem Formulation
	3.2 Random Walk Approach
	3.3 Multiple-Level Grid Algorithm
	3.3.1 Grid Covering (GC) Algorithm
	3.3.2 Adjacent-Edge Rule
	3.3.3 The Complexity of the Multiple-Level Grid Algorithm

	4 Experiments

