
 

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 333–342, 2003. 
© Springer-Verlag Berlin Heidelberg 2003 

Algorithmic Entropy, Phase Transition, and  
Smart Systems 

 
E.V. Krishnamurthy 

 
Computer Sciences Laboratory, 

Australian National University, Canberra, ACT 0200, Australia 
abk@discus.anu.edu.au 

 
 
Abstract. A smart system exhibits the three important properties: (i) interac-
tive, collective, coordinated and parallel operation (ii) self-organization 
through emergent properties (iii) adaptive and flexible operation. A hierarchy 
based on metric entropy is suggested among the computational systems that 
transcend from the unsmart to the smart system through a phase transition like 
phenomenon. Understanding smart systems is useful to solve hard-optimiza-
tion problem inspired by the self-organizing processes found in nature. Such 
systems will be valuable to create artificial systems made up of exotic matter 
to solve specific problems in particular domains of interest with a high effi-
ciency.  

 
 
1   Introduction 

Smart systems have no formal definitions, although such a system seems to be a pre-
cursor to the living system, Brooks [4,5]. As such no suitable formal model is avail-
able for smart systems.  Therefore, we define the smart systems as those systems 
having the following important properties: 

1. Interactive, Collective, Coordinated, and Highly Efficient Parallel Operation 
They can interact with the environment  (hence called open). Also they collectively 
and cooperatively perform actions, coordinating their actions when there is competi-
tion, to obtain maximal efficiency. 

2. Self Organization and Emergence 
The total dynamic behaviour of the system cannot be inferred from the dynamic be-
haviour of its components and new properties emerge abruptly. These new properties 
of the system are not predictable, in advance from the properties of the individual 
interactions. In particular, under emergence, the many degrees of freedom arising due 
to its component parts collapse into a fewer new ones with a smaller number of glob-
ally relevant parameters; see Makishima [27].  

3. Adaptive, Fault-Tolerant, and Flexible Operation 
Smart systems are always flexible to change-they can modify their past behaviour by 
a learning process and adapt to environmental changes, available resources, as well 
as, tolerating failures or non-cooperation of some of their components.  

Our purpose in this paper is to restrict our consideration to  the following issues: 
1. Is the behaviour of smartness analogous to the critical phenomenon (phase tran-

sition or percolation)? Can we obtain suitable parameters to describe this phe-
nomenon? 
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2. Is there a hierarchy of degree of smartness among computational systems?  
3. Can we simulate smart systems to solve intractable problems?  
 
2   Conrad’s  Principles   
 
Before we answer the above questions, we recall the principles proposed by Conrad 
[7]. These have a direct bearing on defining smart systems. According to Conrad, a 
general purpose computing system cannot have all of the three following  properties: 

1.   Structural programmability (algorithmizability) 
2.   High computational efficiency 
3.   High evolutionary adaptability and flexibility 

Properties 1 and 2 are mutually exclusive. That is, we cannot have high computa-
tional efficiency in a programmable system. Properties 1 and 3 are mutually exclusive 
in the region where maximum computational efficiency exists. That is, whenever 
maximal computational efficiency is required, the system should be highly adaptive 
rather than structurally programmable (algorithmic). Based on Conrad's principles, 
we can say that self-organization is not possible in an algorithmizable system. 
    A further support to Conrad's principles is provided by Wegner [35]. Wegner ar-
gues that the algorithmic machines are less powerful than machines that can interact 
with the environment and such interacting systems turn out to be much more efficient 
in coupling material resources to problem solving. As we know, efficient coupling to 
environment makes enormous difference for problems such as pattern recognition, 
survival etc. As a further support to Wegner’s hypothesis, in this paper we will show 
that such interaction introduces positive entropy into the system to turn a rigid algo-
rithmic system into a smart system. An example of a smart system is visual percep-
tion which is computationally most intensive. While a digital computer makes a large 
number of sequential decisions, the biological visual system uses a holistic approach, 
collective or Gestalt .The system makes use of its computational resources very effi-
ciently, whether it is measured by speed of calculation or energy considerations. The 
computations are resistant to damage to hardware. Also emergent properties - such as 
self-awareness seems to be present. Further, there is no structural hardware diagram 
or equivalently a structured program that does it, Haken [ 15], Hameroff [16], Hop-
field [20]. 
 
 
3    Phase Transition Model for Smart System  
 
As mentioned in the introduction, smart systems need to possess the three properties: 

1.   Interactive, collective and parallel operation   
2.   Self organization through emergence 
3.   Adaptive and flexible operation 

Properties 1 and 2 hold near the critical point in a phase transition in a physical sys-
tem [9] or in a percolation model, Stauffer and Aharony [33], near the percolation 
threshold.  Note that the percolation model is more general than the phase transition 
model, since it deals with the more abstract geometric properties rather than the ther-
modynamic properties used in phase transition models. These two models lie at the 
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border of order and disorder and are concerned with the collective and parallel inter-
action among the microscopic objects that result in scale invariance and universality. 
Scale invariance corresponds to a power law behaviour over a wide range of control 
parameter; the exponent involved in this power law is called the critical exponent.  
    By universality, we mean that the set of exponents found in diverse systems group 
themselves into distinct classes, with the property that all systems falling in the same 
class have the same exponents. This suggests that there are common features among 
the underlying microscopic mechanisms responsible for the observed scale invariant 
behaviour. The idea of universality is that apparently dissimilar systems show consid-
erable similarities near their critical points. Accordingly, all percolation/ phase transi-
tion problems can be divided into a small number of different classes depending upon 
the dimensionality of the system and the symmetries of the order state. Within each 
class, all phase transitions have identical behaviour in the critical region, only the 
names of the variables are changed. Thus universality describes the relationship 
among different phase transitions. 
    Also percolation / phase transition models reflect the cooperative, as well as, com-
petitive behaviour among the microscopic objects. The modelling uses a suitable 
geometric structure with a local computation that results in a global change. Further, 
the percolation / Phase transition systems have the property 3, namely, adaptive and 
flexible behaviour to tolerate failures, since they both deal with the formation of clus-
ters or creating paths among distant neighbours, even if some of these neighbours are 
non-cooperative. This ultimately can lead to an emergent behaviour through self-
organized criticality.  
    From the above arguments we see that to model a smart system, the phase transi-
tion or percolation model will be of value since the smart system seems to lie between 
order and disorder.This observation has been made earlier by Langton [24], Wolfram 
[31], who suggest that life exists at the edge of chaos, and by Zak et al [37] who sug-
gest that instability is necessary to create intelligence.  
    Prigogine [30,31] emphasises why non-unitary evolution based on star- hermitean 
operator is needed to deal with open systems, as well as, systems which are far-from 
equilibrium and attain stability. Prigogine emphasises that the irreversible (non-
unitary) process play a fundamental role in biological systems. According to Prigog-
ine, future and past play the same role in time- reversible unitary systems; hence they 
cannot explain the emergence of new dynamical patterns involved in the intelligent or 
smart biological systems.  
    Hence, the three required properties of smart systems are difficult to realise within 
the unitary transformation or time reversible evolutionary systems. It looks as though 
hysteresis, long term memory and time arrow have a direct role in turning the systems 
smarter. In fact, it is due to the time arrow and memory, the smart system remembers 
and orders the temporal events as earlier and later, without the explicit sequential 
addressing mode used in conventional programming. This leads to a kind of self-
awareness of past, present and future leading to a psychological time arrow. Break-
down of time symmetry seems essential for constructing special purpose systems 
made up of exotic phases of matter that can function similar to the Nature beyond the 
computable domain.  
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4   Role of Metric and Algorithmic Entropy   
 
Metric entropy plays a similar role like the ordinary entropy does in thermodynamics 
or information theory to measure the disorder in a system. Metric entropy is defined 
as the average information per measurement obtained from an (denumerable) infinite 
sequence of finite precision – identical measurements made on a time evolving sys-
tem from a time minus infinity to plus infinity. If the metric entropy is zero it implies 
that the measurement sequence, begun in the remote past, ceases to provide any more 
additional information after a finite time T. This means adequate information has 
been acquired to predict the properties of that system completely and unambiguously. 
This also means that the information gained by measurement equals the entropy de-
crease in the system so that no uncertainty remains.  However, if the metric entropy is 
positive this means the entropy in the system has not decreased as much as the infor-
mation obtained by measurement and still the uncertainty remains. It can also be due 
to the fact that the system is producing entropy faster than what we can measure.  
    Metric entropy is related to another entropy called “algorithmic entropy” or Kol-
mogorov-Chaitin entropy, Chaitin [6]. Unlike in ordinary entropy, in algorithmic 
entropy we use a rule or a program as the basis for the creation of order or disorder in 
objects that are created from a given input. We then express the order and disorder of 
the created objects in terms of the program length and the length of the output it gen-
erates. For this purpose, we measure the bit-length of the minimal program ( or func-
tional rule) that generates a required output sequence from a given input sequence.  
    As an example, consider the creation of a totally erratic infinite sequence. This 
sequence cannot be described as an output sequence of some input sequence by using 
a simple program whose length is smaller than the desired output length. Analo-
gously, whenever the predictions of a physical theory can be obtained completely, 
such a theory is representable by a Turing machine [10]. The analogy between meas-
urement procedure and algorithm is now clear. In both cases there is a well-defined 
input and we want a well-defined output after a finite time that can be described in 
finite time and space. This analogy permits us to relate metric entropy to the algo-
rithmic entropy. Also it enables us to use the algorithmic complexity measure to de-
scribe the complexity of the measurement procedure. That is the bit-length of the 
minimal program that describes the functional rule to generate a required output from 
a given input, can be used to define the complexity of the measurement procedure, as 
well as, algorithms.  
    We can define the algorithmic entropy measure thus: Let K(n) define the bit length 
of a minimal program that can output any n bit finite subsequence using a functional 
rule. Also let K = Lim n →  ∞ [K(n)/n]. We note that 0 ≤K ≤ 1. Thus when K > 0 the 
length of the program required to generate a desired output sequence goes on increas-
ing or the rule is not finite and turns out to be more and more complex. However, for 
K = 0 the program length is much shorter than the required output thus defining a 
deterministic, orderly and predictable output according to an algorithmic rule. Thus K 
can be used to measure metric entropy.  
    In general, systems with zero entropy are tractable (predictable) and those with 
positive entropy are not predictable. Positive entropy systems cannot be described in 
any simpler way than they are and there no formal grammatical rules that can be used 
to understand them. Well- structured objects (e.g., Context free grammars, regular 
grammars and serial-parallel orders) provide for easy description through functional 
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rules and hence have zero metric entropy. The systems with zero metric entropy are 
classified “Turing or algorithmically expressible”. Such zero-entropy systems are 
amenable for accurate measurements in a finite time and their orbital sequences are 
algorithmically predictable leaving no uncertainty in measurement. Also, the informa-
tion gained by measurement equals the entropy decrease in the system. In positive 
entropy systems, the rate of evolution can be faster than what we can measure to gain 
information. 
 
Remark: In Gell-Mann [12], p.101, the algorithmic entropy is called “depth” and 
the metric entropy is called “crypticity”; the former measures the amount of (labour) 
time required to go from the compressed spatial information or minimal program to 
the full spatial description, while the latter measures the amount of labour (time) 
involved to compress the full spatial description into a minimal program. 

4.1   Algorithmic Information and K Entropy  

Consider K = Lim t → ∞ [ K(t)/t)]; where K(t) is the algorithmic information  needed 
to record a piece of the trajectory in the interval of time t. Thus for positive K-
entropy, in the long run the recording of information for evolution increases un-
bounded and the evolution cannot be followed deterministically, unless a dispropor-
tionately long or infinite time is devoted to this task beyond a critical time  
t = T(c). As we approach T(c), the recording is critically slowed down -much like in 
phase transition phenomena. At this time the motion is no longer deterministic and 
the forward and backward evolution are not reversible resulting in a spontaneous 
breakdown of time - reversal symmetry [10]. In contrast, when K= 0 the evolution 
can be recorded deterministically, without breaking the time reversal symmetry. 
Thus a phase -transition like situation arises between the Turing expressible and Tur-
ing non-expressible systems leading to a critical point behaviour. By the universality 
principle used in phase transition-like phenomenon it is possible that critical expo-
nents and scaling factors exist for such systems so that we can say when the system 
can become smart. We will discus this aspect again later. 
 
4.2   Hierarchy among Machines 

Based on Metric-Algorithmic entropy we can establish a hierarchy among the compu-
tational systems (See Fig. 1). That is the metric entropy seems to play an important 
scale-free role as in percolation or phase transition in deciding whether the system is 
smart. Essentially, the zero entropy machines cannot cope up with the complexity of 
solving a problem leading to a critical point corresponding to intractability and non-
computability. At this point a phase transition like phenomena can help towards 
emergence of new properties resulting in positive entropy and self -organization, Bak 
[1]. Thus we can classify the two major classes of machines, ordinary (O) and dissi-
pative (P) based on metric entropy as below. 

 
O. Ordinary or Zero Metric Entropy Machines: 
Completely structured, Deterministic, Exact behaviour (or Algorithmic ) Machines. 
This class contains: Finite State machines, Push down-stack machines, Turing Ma-
chines (Deterministic) that halt and Exactly integrable Hamilton flow machines.   
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Such machines are information-lossless; their outputs contain all the required infor-
mation as dictated by the programs and the information gained by running the pro-
gram exactly equals the entropy decrease in the program, Gell-mann [12], p.224. 
 
P. Positive Metric Entropy Machines: 
These are Partially Structured, Non-deterministic, Probabilisitic, Average behaviour, 
ergodic systems that preserve shape and volume in phase space , mixing systems 
where shape in phase space is distorted, Kolmogorov -flow (K-flow)  systems with 
the motion in phase space unpredictable,  nonequilibrium systems exhibiting macro 
and emergent behaviour – such as Chemical and Biological machines and living sys-
tems (Fig. 1). The positive entropy machines do not obey the unitary transformation 
law. Their evolution results in increasing entropy. Their actions are irreversible. That 
is the time-reversal symmetry is spontaneously broken. Only such machines can be-
come smart; but they will have to experience an arrow of time. The measurements on 
these systems will not reveal all the required information.  
 
4.3   Combining Zero and Positive Entropy Machines to Create Smartness 

Prigogine [30,31] suggests the use of non-unitary transformation, called star-
Hermitean operators to extend the capabilities of computational systems to reflect 
average behaviour. That is we require the tools of both equilibrium and non-
equilibrium quantum statistical mechanics to create smart systems that lie at the criti-
cal point between order and disorder. We also recall from Gal Or [11] that irreversi-
bility is essential for creating smart matter. In his book Gal-Or asserts that all proc-
esses in nature can be understood by an optimal mixture of order and disorder. Thus 
to create smart systems we need to combine the above two different classes of ma-
chines, Zak et al [37], Gell-Mann[12]. 
 
 
5   Simulating a Mixture of Entropy in Systems  
 
A way to simulate a mixture of the zero and positive entropy machines is by choosing 
the mode of application and the action set of a rule-based program to be either deter-
ministic, nondeterministic, probabilistic or fuzzy.  Rule application policy in a pro-
duction system [23]  can be modified by: 

(i) Assigning probabilities/fuzziness for applying the rule 
(ii) Assigning strength to each rule by using a measure of its past success  
(iii) Introducing a support for each rule by using a measure of its likely relevance to 
the current situation.  

The above three factors provide for competition and cooperation among the different 
rules. In particular, the probabilistic rule system can lead to emergence and self-
organized criticality. Thus, we may attempt to enlarge the capabilities of class O 
machines by simulating special features of class P machines - using nondeterminism, 
randomness, approximation, probabilities, equilibrium-statistical mechanical (e.g. 
simulated annealing) and non-equilibrium statistical mechanical(e.g. genetic algo-
rithms and Ant algorithm [8] ). 
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Fig. 1. Hierarchy of systems 

 

 
6   Phase Transitions in AI Systems 
 
Phase transition like situation have been observed experimentally in a wide variety of 
heuristics used for search problems in NP class or beyond. This phenomenon is called 
a knife-edge phenomenon (name given in AI); Hubermann and Hogg [21], Gent and 
Walsh [13] , Lau and Okagaki [25],Walsh [34], Zhang and Korf [38]. Here the over- 
constrained problems tend to become more constrained and under- constrained prob-
lem tends to become less constrained as the search becomes deeper. In between is the 
knife-edge, a region in which critically constrained problems (that is those at the 
solvability phase transition) independently of the depth at which one examines the 
search tree. This knife edge phenomenon is also known in Artificial life (AL) as the 
Edge of chaos, Langton et al [21]. Since self- organized criticality is associated with 
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the phase transition, attempts are under way to exploit this feature to solve hard opti-
mization problems. Attempts have been made to model far from equilibrium and 
nonequilibrium processes to solve hard optimization problem, Bak [1]. These at-
tempts have largely been experimental, Boettcher [2], Boettcher and Percus [3]; 
Hubermann and Hogg [21], Pemberton and Zhang [29], Hogg and Williams[18], 
Hogg and Kephart [17]; however, some theoretical attempts have been made by Go-
mes and Selman [14], Mezard et al [28]. 
 
6.1   Simulating Nonequilibrium System: Evolutionary Optimization 

In nature highly specialized complex structures emerge when their most inefficient 
elements are selectively driven to extinction. Evolution progresses by selecting 
against the few most poorly adapted species, rather than by expressly breeding those 
species best adapted to the environment. The experimental approach by Boettcher and 
Percus [3] uses the extremal optimization (EO) processes in which the least fit vari-
ables are progressively eliminated; Sneppen et al [32], Holland [19]. The EO process 
uses a different strategy in comparison to simulated annealing. In simulated annealing 
the system is forced to equilibrium dynamics by accepting or rejecting local changes. 
EO, however, takes the system to a far from equilibrium position and persistent selec-
tion against the worst fitness lead to near-optimal solution. Also EO differs from 
Genetic algorithm (GA); whereas GA keeps track of entire gene pools of states from 
which to select and breed an improved generation of solutions, EO operates only with 
local updates on a single copy of the system, with improvements achieved instead by 
elimination of the bad. EO also differs from the greedy strategy which aims at im-
proving the solution at each step and as a result falls into a local optimum. EO, how-
ever, can fluctuate between good and bad solutions and can enable us to cross barriers 
and approach new regions in configuration space. 
 
6.2   Boolean Satisfiability Problem and Phase Transition  

Another important approach in this direction is due to Korkin [22]. Korkin considers 
the solution of the boolean satisfiability problem or SAT near the midpoint of the 
phase transition curve from satisfiable to the nonsatisfiable to illustrate the self-
organization..Based on this we can create a self organized evolutionary process for 
solving K-SAT when the system is in nonequilibrium state near the phase transition. 
 
6.3   Do Critical Exponents and Scaling Laws Exist for Smartness? 

Although the different studies show the existence of a phase -transition like phenom-
ena and power law relationships do hold, as yet, we cannot confidently predict the 
critical probability and power law exponents without experimentation for each indi-
vidual complex problem. Although scaling and universality are widely accepted ex-
perimentally in many different areas (including Biology, Medicine, Physics and So-
cial sciences and in random networks, including the World-Wide-Web), they are yet 
to be established mathematically. Also, practical computation for evaluating such 
parameters is difficult. Thus the only approach seems to be available at the present is 
simulation. This gives rise to various types of scaling laws depending upon the nature 
of the problem. Studies on nonequilibrium physics, Prigogine [31], Lebowitz [26] can 
help us to understand these aspects. 
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7   Matter and Life 
 
Brooks [4,5] examines the more general questions than those raised in this paper, 
namely, the relationship between matter and life, what is that makes the matter alive 
and what do we lack in our understanding to create living machines. He argues that 
this inability to bridge matter and life may arise due to four factors: 

1. Our models may not have adequately correct parameters 
2. Our models may not be complex enough to bring out the distinction and may 

lack unimagined features of life. 
3. Lack of computing power 
4. Lack of “new stuff”, namely mathematics and physics 

    Since smart system is a precursor to living system, we should expect a phase transi-
tion like situation arising to distinguish living systems from non-living systems. 
 
8    Conclusion 
 
We described some important properties that a smart system need to posses and the 
entropy conditions required for an ordinary system to become smart resembling a 
phase-transition. We also a presented a review of the current attempts to create smart 
heuristics by using the knife-edge phenomenon encountered in solving intractable 
problems. Although, percolation model is suitable for understanding a smart system, 
we are unable to obtain quantitative parameters, e.g., scaling laws and critical expo-
nents that can help us distinguish a smart system from unsmart systems. Computa-
tional science along with Physics, Biology and Mathematics will play a major role in 
the development of a new science as envisaged by Wolfram [36]. 
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