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Abstract. We present a design methodology for the construction of par-
allel programs that is deadlock free, Provided that the “components” of
the program are constructed according to a set of locally applied rules.
In our model, a parallel program is a set of processes and a set of events.
Each event is shared by two processes only and each process progresses
cyclically. Events are distinguished as input and output events with re-
spect to their two participating processes. On each cycle a process must
complete all output events that it offers to the environment, be prepared
to accept any, and accept at least one, of its input events before complet-
ing any computations and starting a new cycle. We show that however
the events are distributed among the processes, the program is deadlock
free. Using this model we can construct libraries of constituent processes
that do not require any global analysis to establish freedom from dead-
lock when they are used to construct complete parallel programs.

1 Introduction

In this paper we develop a programming design methodology for parallel pro-
grams that manifestly avoids deadlock. Deadlock is an issue in many different
types of program and examples of explicit attempts at producing or establishing
deadlock free formulations can be found in applications ranging from robotics[12]
and control[6], to scheduling[1, 7] and graph reduction[19]. More general method-
ologies[2, 11] have also been published. The programming strategy that we estab-
lish in this paper is a general method of constructing algorithmically parallel[16]
programs so that they cannot deadlock. Our methodology comes in two flavours,
one is a synchronised model which is guaranteed to produce “live” programs but
at the cost of some redundant communications. The other, a non-synchronised
model, removes the event redundancy at the cost of “liveness”. In practice how-
ever, as we show in §5 liveness is restored by a fair queueing scheme.

This paper shows how to structure and combine components, using only ‘local’
or component centred rules to ensure that the resulting program is free from
deadlock, even with arbitrary cycles in the communication graph. No global
requirements, other than each output must have a corresponding input, are nec-
essary, and no overall synchronization is needed. The programming model is
readily implementable with existing software, for example MPT [20)].
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A program is composed of components which cycle continuously. Fach compo-
nent is structured in pseudo code as

y = yo INITIAL OUTPUT VARIABLES
T = 1y INITIAL INPUT VARIABLES
FOREVER
DO IN PARALLEL
OUTPUT y
INPUT AT LEAST ONE z
END DO
COMPUTE y = f(z)

The details of the computation are application dependent, but we assume that
it comprises actions internal to the local process only and has no bearing on the
event sequence of the overall program.

Deadlock due to components waiting to send a message before they are willing
to receive one is impossible because wanting to send a message implies being
willing to read one, unless a message has been read from that source in this
cycle already. Consequently closed cycles don’t appear in the communication
graph[13]. Furthermore, no fairness conditions, which specify “equal treatment”
conditions, of any kind are required. Components can compute an appropriate
subset of their output to exercise, which can be different on each cycle, without
invalidating the result. We call this the asynchronous model. A related model ,the
synchronous model, which also has the same freedom from deadlock, exercises
all its output on every cycle.

In practice the asynchronous model is more efficient as fewer messages are being
passed around the system but the synchronous model has long been used to
ensure deadlock freedom in Petri-Net designs [5, 9] or other state transition based
methods[3, 14, 15].

Figure 1 is a pictorial representation of a particular parallel program, the alpha-
bet of which is {a, b, ¢, d, e, f} and the constituent processes are { P, P>, P3, Py, P5}.
This program can operate according to our asynchronous or synchronous rules,
but not a mixture of both. The alphabet is partitioned into input events and
output events with respect to each constituent process. For example the input
event set (depicted by the inward arrows) for process Py is } = {d,f} and
the output event set (depicted by the outward arrows) is Oy = {a}. Similarly,
L = {g} and O, = {e,f}, and so on. The precise definition of components is
written in CSP. The proof establishes that it is impossible for any output to be
permanently blocked. In §2 we give some background to Communicating Sequen-
tial Processes, CSP, the underlying methodology that we use, and in §3 and §4
we formally define the synchronous and asynchronous models respectively and
establish the terms and conditions of their freedom from deadlock. Finally in §5
we show how these models are effectively used in practice.
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Fig. 1. A Diagrammatic Representation of a Program

2 Theoretical Background

In this paper we use the failures model of Communicating Sequential Processes
(CSP) to formally define and verify our programming model . This is a process
based model that focuses on the communications events that occur between
processes. These events are assumed to be atomic and instantaneous and for an
event a to happen, it must be engaged in simultaneously by all processes that
contain a in their alphabet. The principle introductory references to CSP are
the books by Hoare [8] and Roscoe [17].

A process P is a 3-tuple (aP, failures(P), divergences(P)). The alphabet of P,
aP, is the set of events that P can engage in . The list of events that a process
has engaged in, is its trace, and the set of all possible traces of P is traces(P).
failures(P) is a set of pairs, (s, R), such that P can engage in the action of s €
traces(P) in order and then refuse to engage in all the actions in the refusal set
R. After engaging in a trace t € divergences(P), P can engage in an unbounded
sequence of events from its alphabet. This is livelock.

P can only affect events in its alphabet and in particular P || ¢ must synchronize
on events in their common alphabet. After engaging in the trace ¢, P becomes
P/t.

In the definitions in the following sections we make use of the special process,
RUN, which is a process that never diverges nor refuses any event in its alphabet.
This paper uses RUN to eliminate the effect of terminating processes which have
done their job via the identity RUN || P = P for any process P provided that
aRUN C aP. We also use the result RUN, || RUNg = RUNayup, which is
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readily proven by establishing the equivalence of the alphabets, divergences and
failures of the processes (RUN4 || RUNp) and RUNayp.

Practical parallel programming processes communicate by passing messages or
sharing data at some common location. CSP is not concerned with the ‘direc-
tion’ in which the data is flowing, only in the fact that all the processes with a
given event in their alphabet are synchronised when that event happens. Later
in this paper we will have to distinguish between input and output processes be-
cause events common to two processes are handled differently by those sharing
processes.

The following standard[18] definition means that for our programming model we
must establish that the refusals set is never the entire alphabet in order to prove
our assertion of deadlock freedom.

Definition 1 (Deadlock Freedom) A process P is deadlock free, if and only
if At € traces(P) such that (t,aP) € failures(P).

The definitions and proofs that establish deadlock freedom for our programming
model in this paper are easily established, since the components of the model
are constructed to do so. This means that programs constructed according to
our prescription do not require a global analysis to establish deadlock freedom
as do more general programming models[17].

3 The Synchronous Programming Model

We begin with a simplified model which we call the synchronous programming
model. The characteristics of this model are that each component process (node
in the graphical representation) executes cyclically and on each cycle engages
in all its input and output events before computing new output variable values.
Since every output and input event is allowed to happen in parallel there are no
cycles of event dependency and so deadlock is manifestly not possible. Moreover,
every event happens on every cycle. This is the standard way in which deadlock
is avoided in state machine driven embedded systems [3].

In the following section we will relax the condition that every input event be
satisfied on every cycle. This, while retaining the freedom from deadlock prop-
erty, eliminates messages(in real systems) that are only there to establish that
freedom from deadlock. This relaxation does however, introduce the possibility
of some events being refused for an indeterminate number of cycles. In practice
though, simple fairness implementations, like FIFO queueing [4] of messages at
the constituent processes readily rectifys this.

A synchronous program SP is a finite collection of constituent processes { S, Sa, ... Sp }
that interact through a set of events 0. The event set /0 has two partitions
71(I0) = Uj=1,nIj and 1o (I0) = Uj=1,, 0;. I; and O; are termed the input and
output events of S; respectively. In addition each element i0 € IO is contained
in the alphabet of two, and only two, processes. Hence Vio € IO 3 unique I; and
Oj such thatOj N Ii = {ZO}
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With these definitions in mind we define a synchronous program SP as
SP = ||] Sj

Each of the constituent processes .S; has a synchronising event s; in its alphabet,
which facilitates the cycling of the process once all input and output events have
happened. Each S; then has the structure:-

OUT = ||,., 0 — RUN,
IN = ||,., i = RUN,
CYCLE = Oiocour io— CYCLEOs — S (2)

To accommodate sources and sinks we use the following special definitions when
some or all of the constituent event sets are empty.

OUT = RUN when O = {}
IN = RUN, when I = {}
CYCLE =s — S when OUI = {} (3)

The complete alphabet of S is O U T U {s}. The internal computation phase is
assumed to happen “between” the s and S in the term s — S in the CYCLE
process. The output process OUT cannot engage in s until all output events
have happened. Likewise, the input process IN cannot engage in s until all
input events have happened.

We now establish that the OUT and IN processes must engage in all their
events before engaging in the synchronising event s. In the following we use the
notation < [0]> to stand for a trace comprised of all the elements of O in some
(unspecified) order.

Lemma 1 All output events happen once before synchronisation. Provided that
the environment is prepared to engage in the events of O, an output process,
OUT as defined in equation 2 has a trace, t =<[O0], s >.

Proof If O = {} then OUT = RUN, and the lemma holds since t =<s>.
When O is not empty,

OUT =||,co 0 — RUN,

Because the constituent parallel processes have disjoint alphabets each can engage
in its initial event before being ready to engage in s. OUT can engage in the
initial events c in any order so any trace of OUT is of the form t =<[O0], s>.

We note that the above result is a statement about the trace of OUT under
the assumption that none of the events of O are in the refusal set of any other
process. Also because the form of IN is the same as that of OUT, an equivalent
result holds, namely:-
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Lemma 2 All input events happen once before synchronisation Provided that
the environment is prepared to engage in the events of I, an input process, IN
as defined in equation 2 has a trace, t =<[I], s>.

Now we must show that a synchronous program SP provides the environment
for lemma 1 and lemma 2 to hold, which will allow us to establish the cyclical
nature of synchronous programs, prove that they are free from deadlock and
moreover, show that they are “live”, in the sense that every event happens on
every cycle.

Theorem 1 A synchronous program is deadlock free
If SP is an asynchronous program as defined in equation 1, then
At € traces(SP) s.t. (t,aSP) € failures(SP)

Proof The result required is that the refusals(SP) C aSP and we note that
refusals(Py || P2) = refusals(Py) U refusals(P2)[8].

refusals(SP) = U;refusals(S;)
= U, (refusals(OUT;) U refusals(IN;) U refusals(CYCLE;))

The refusals set refusals(SP) is mazimal when refusals(S;) are mazimal Vj =
1,...,n. refusals(OUT;) and refusals(IN;) are mazimal after all the O; and I
have happened, in which case:-

refusals(S;/ <[I; U O;]>) = O; U L; and
refusals(CYCLE; | <[I; U O;]>) = {}

At this point only events in SY ={s; |j =1,...n} can happen. However

OUT;/ <[0;]>= RUN,
IN;/ <[1;]>= RUN,, and

Consequently S;/ < [I; U O;],s; >= S; using lemma 1 and lemma 2 and so
SP/ <[I0],[SY]>= SP, and the mazimal refusals set of SP C aSP.

4 The Asynchronous Programming Model

We now seek to remove some of the restrictions of the synchronous model and
in particular consider systems the component processes of which need not ex-
ercise all possible output events on every cycle. Our overall definition of an
asynchronous program is the same as that of a synchronous program but the
component processes behave differently.

Similar to a synchronous program, an asynchronous program AP is a finite
collection of constituent processes {Aj, As,...A,} that interact through a set
of events IO, partitioned as in §3.
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We define an asynchronous program AP as
AP = ||, 4,
A; = OUTy || IN; || CYCLE; (4)

Each component component process has the form:

OUT = KEY ||,,co o' = RUN,
KEY = ||,ncono (0™ = RUN, O RUN,)
IN = ||,c; (i = RUN, O RUNy) || LOCK
LOCK = O,¢; (i — RUNy )
CYCLE = Ujpeouy (io — CYCLE) O s — A’ (5)

To accommodate sources and sinks we use the following special definitions when
some or all of the constituent event sets are empty.

OUT = RUN; when O = {}
IN = RUN, when I = {}
CYCLE =s — A" when OU T ={} (6)

A is the overall component and s synchronises the various component processes.
The complete alphabet of 4 is O U I U {s}. A computation phase is assumed
to occur “between” the s; and Aj in the term s; — A’ but as the details of
the computation phase of the cycle are irrelevant they are not modeled here. A
process 4;, in general is allowed to select different active set of outputs O]'- C 04
for each cycle on any basis. The term s — A’ indicates that the “active” output
set O' may be different on the next cycle. The output process OUT cannot
terminate until all active output events have happened.

We now show that this formal definition has the attributes described in the
introduction. The IN process ensures that at least one input events completes
before IN is ready to engage in the synchronising event s. Now because each
process can select the output events that must complete on every cycle, there
remains the possibility that a process 4; could become isolated by virtue of not
being offered any of its input events by any of the other processes. This scenario
is circumvented by the presence of the KEY process in the OUT process.

The following lemma shows that for an output process QOUT, all output events
happen once and only once before the synchronising event s happens.

Lemma 3 All output events happen once before synchronisation Provided that
the environment is initially prepared to engage in O, an output process

OUT = KEY ||, o' = RUN,

has a trace, t =<[Q U O'], s>, where Q) C O\O'.
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Proof If O' = {} then OUT = RUN; and the lemma holds since t =<s>.
When O' is not empty,

OUT = KEY ||,,c0 o' — RUN,

Because the constituent parallel processes have disjoint alphabets each can engage
in its initial event before being ready to engage in s. OUT can engage in the
initial events O' in any order and KEY can engage in any subset Q C O\ O’ so
any trace of OUT s of the form t =<[Q U O'], s >.

The following lemma shows that for an input process IN, at least one input
events happens before the synchronising event s happens. A particular input
event, can only happen once before s happens

Lemma 4 At least one input event happens before synchronisation Provided
that the environment is initially able to engage in I, an input process

IN = ||,c; (i » RUN, O RUN;) || LOCK
LOCK = Oier (i = RUNpug,)

has a trace, t =<[Q], s>, where Q C I.

Proof If I = {} then IN = RUN; and the lemma holds since t =<s>.
When I is not empty,

IN =||;c; (i = RUN, O RUN;) ||Qics (i = RUNu63)
Both the process
Ojer (i = RUN;ysy) and the process ||;c; (i = RUN, O RUN,)
can engage Q@ # {} C I, then
Oier (i = RUNpugsy) / <[Q]>= RUN g6
and
lies (i = RUN, O RUN,) / <[Q]>= RUN; ||,_c\ o (i = RUN, O RUN;)
If s now occurs we have
RUN1ugsy llien g (i = RUN; 8 RUN;) [ <[Q], s>= RUNju(s)
then t =<[Q], s> and the lemma is established.

Now we must show that a synchronous program AP provides the environment for
lemma 3 and lemma 4 to hold, which will allow us to establish the cyclical nature
of asynchronous programs, prove that they are free from deadlock. However
asynchronous programs are not “live” in the sense that every event need not
happen on every cycle.
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Theorem 2 An asynchronous program is deadlock free

If AP is an asynchronous program as defined in equation 4, then
At € traces(AP) s.t. (t,aAP) € failures(AP)

Proof The refusals set refusals(AP) is mazimal when refusals(S;) are mazimal
Vi =1,...,n. refusals(OUT;) and refusals(IN;) are mazimal after all the O,
and I; have happened, in which case:-

refusals(S;/ <[L; U O;]>) = 0; U, and
refusals(CYCLE; | <[I; U O;]>) = {}

At this point only events in SY = {s; | j = 1,...n} can happen. However

OUT;/ <[0;]>= RUN,
IN;/ <[I;]>= RUN,, and

Consequently A;/ <[I;U Oj], s; >= Aj, by lemma 3 and lemma 4 and so AP/ <
[10],[SY]>= AP, and the mazimal refusals set of AP C aAP.

5 Conclusion

We present a design methodology for the construction of parallel programs that
is deadlock free, Provided that the “components” of the program are constructed
according to a set of locally applied rules. In our model, a parallel program is a
set of processes and a set of events. Fach event is shared by two processes only
and each process progresses cyclically. Events are distinguished as input and
output events with respect to their two participating processes. On each cycle
a process must complete all output events that it offers to the environment,
be prepared to accept any, and accept at least one, of its input events before
completing any computations and starting a new cycle. We show that however
the events are distributed among the processes, the program is deadlock free.
Using this model then, we can construct libraries of constituent processes that
do not require any global analysis to establish freedom from deadlock when they
are used to construct complete parallel programs[10].

In practice, parallel program construction according to our asynchronous model,
is readily implemented and made more effective by incorporating local fairness.
For example the MPI libraries provide means to input all waiting messages from
unique sources, thereby assuring fair servicing of inputs while at the same time
not allowing two inputs from the same source on the same program cycle.

We conclude that our programming model, although not suited to all possible
parallel program communication patterns, particularly where the task graph is
dynamic, does ensure deadlock freedom in algorithmic parallelism which is the
principle paradigm used in the programming of embedded systems.
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