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Abstract. In this paper, we develop a greedy algorithm for the negative
cost cycle detection problem and empirically contrast its performance
with the “standard” Bellman-Ford (BF) algorithm for the same problem.
Our experiments indicate that the greedy approach is superior to the
dynamic programming approach of BF, on a wide variety of inputs.

1 Introduction

In this paper, we are concerned with the Negative Cost Cycle Detection problem
(NEG): Given a directed graph G =< V,E >, where |V| = n and |E| = m, and
a cost function c : E→ !, is there a negative cost cycle in G?

Our main contribution is the proposal of a greedy algorithm for NEG, based
on vertex contraction. All approaches to the negative cost cycle problem in the
literature are based on dynamic programming; our approach is the first and only
greedy approach to this problem, that we know of. Scaling approaches have also
been proposed for NEG ([Gol95]); however, these algorithms are efficient, only
when the edge-weights are small integers. We do not place any restrictions on the
edge costs. We note that the problem, as specified, is a decision problem, in that
all that is asked of an algorithm is to detect the presence of a negative cycle. This
problem finds application in a wide variety of areas such as Constraint Analysis
[DMP91], Compiler Construction [Pug92], VLSI Design [WE94] and Scheduling
[Sub02].

Our experiments indicate that Vertex Contraction is an effective alternative
to the “standard” Bellman-Ford (BF) algorithm for the same problem; this is
most surprising since in the case of sparse graphs, BF is provably superior to
Vertex Contraction (from the perspective of asymptotic analysis).

2 The Vertex-Contraction Algorithm

The vertex contraction procedure consists of eliminating a vertex from the input
graph, by merging all its incoming and outgoing edges. Consider a vertex vi
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with incoming edge eki and outgoing edge eij . When vi is contracted, eki and
eij are deleted and a single edge e′

kj is added with cost cki + cij . This process
is repeated for each pair of incoming and outgoing edges. Consider the edge e′

kj

that is created by the contraction; it falls into one of the following categories:

1. It is the first edge between vertex vk and vj . In this case, nothing more is to
be done.

2. An edge ekj already existed between vk and vj , prior to the contraction of
vi. In this case, if c′

kj < ckj , keep the new edge and delete the previously
existing edge (since it is redundant); otherwise delete the new edge (since it
is redundant).

Algorithm (2.1) is a formal description of our technique.

Function Negative-Cost-Cycle(G, n)

1: for (i = 1 to n) do
2: Vertex-Contract(G, vi)
3: end for
4: return(false)

Algorithm 2.1: Negative cost cycle detection

We defer a formal proof of the correctness of the VC algorithm to the journal
version of this paper. In the full version, an analysis of VC is also provided; we
show that the algorithm runs in worst case time O(n3).

Thus, for dense graphs, Algorithm (2.1) is competitive with Bellman-Ford
(BF); however for sparse graphs, the situation is not so sanguine. For instance,
an adversary could provide the graph in Figure (1) as input.

v
1

v2 v3 vnvn-1

Fig. 1. Sparse graph that becomes dense after vertex contraction
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Function Vertex-Contract(G, vi)

1: for (k = 1 to n) do
2: for (j = 1 to n) do
3: if (eki and eij exist) then
4: {Let ckj denote the cost of the existing edge between vk and vj ; note that

ckj =∞ if there does not exist such an edge}
5: Create edge e′

kj with cost c′
kj = cki + cij

6: Delete edges eki and eij from G
7: if (j = k) then
8: {A cycle has been detected}
9: if (c′

jj < 0) then
10: return(true)
11: else
12: Delete edge ejj

13: end if
14: else
15: if (c′

kj < ckj) then
16: Replace existing edge ekj with e′

kj in G
17: else
18: Delete edge e′

kj

19: end if
20: end if
21: end if
22: end for
23: end for

Algorithm 2.2: Vertex Contraction

The above graph is sparse and has exactly 2 · (n − 1) edges. Observe that
if vertex vn is contracted first, the resultant graph is the complete graph on
n − 1 vertices and therefore dense. We call this graph the cruel adversary; in
our experiments, we made it a point to contrast the performance of the vertex
contraction algorithm with BF on this input. It is clear that any well-defined
order of selecting the next vertex to be contracted is susceptible to attack by a
malicious adversary; we could however choose the vertex to be contracted at ran-
dom, without affecting the correctness of the algorithm. We have implemented
Algorithm (2.1) in two different ways; in one implementation, the vertex to be
contracted is chosen in a well-defined order, whereas in the second implemen-
tation, it is chosen at random. Algorithm (2.3) is a formal description of the
random vertex contraction algorithm.

3 Implementation

Our experiments are classified into various categories, based on the following
criteria:

1. Type of input graph - Sparse with many small negative cycles (Type A),
Sparse with a few long negative cycles (Type B), Dense with many small
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Function Random-Negative-Cost-Cycle(G, n)

1: Generate a random permutation Π of the set {1, 2, 3 . . . , n}.
2: for (i = 1 to n) do
3: Vertex-Contract(G, vΠ(i))
4: end for
5: return(false)

Algorithm 2.3: Random negative cost cycle detection algorithm

negative cycles (Type C), Dense with a few long negative cycles (Type D),
and the Cruel Adversary (Type E).

2. Type of Algorithm - Bellman-Ford (BF), Vertex-Contraction (VC) or Ran-
dom Vertex-Contraction (RVC).

3. Type of Graph Data Structure - Simple Pointer or Array of Pointers.

All times recorded were averaged over 5 executions of each implementation.

3.1 Machine Characteristics

Machine Model Silicon Graphics Onyx2

Processors IR2/R10 250 Mhz

Cache 8 MB

Memory 2 GB

Operating System IRIX 6.5.15

Language C

Software gcc

Table 1. Implementation System.

3.2 Graph Data Structures

Two different types of graph data structures were used for the experiments. We
implemented BF, VC and RVC with an array of pointers structure and a simple
pointer structure.

The array of pointers structure is a new representation. This representation
makes use of an array of n pointers, one for each of the n vertices of the graph.
Each pointer points to an n element array, which corresponds to the n vertices
of the graph. Initially all entries of the array are assigned an undefined value.
For a vertex vi, if there exists an edge from vi to another vertex vj , position vj of
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the array that vi points to is assigned the cost of the edge between vi and vj . It
should be noted that this representation is different from the adjacency-matrix
representation [CLR92].

The simple pointer structure, also known as the adjacency-list representation
[CLR92], requires only linear space. This representation makes use of an array
of n lists, one for each of the n vertices of the graph.

3.3 Experimental Setup for Sparse Graphs

Sparse graphs were generated using the generator developed by Andrew Gold-
berg [CG96], which generates multiple edges between two vertices. Sparse graphs
are defined as graphs with o(n · log n) edges. We generated each graph 5 times
using 5 different seeds for the random number generator.

Graphs of Type A and B were tested, with a number of vertices ranging from
500 to 5,500 in increments of 500.

We define a small negative cycle as one consisting of at most n
100 vertices.

We define a long negative cycle as one consisting of Ω(n
2 ) vertices. The number

of long negative cycles in the input graphs was set to 4.

Array of Pointers
(Time in Seconds)

n VC BF
500 0.15351 2.80657
750 0.50453 9.37442

1,000 1.58202 27.9044
1,250 2.23023 54.0744
1,500 4.74535 105.143
1,750 5.55235 156.953
2,000 12.7588 257.852
2,250 19.5588 337.136
2,500 13.9183 514.046
2,750 24.3229 624.652
3,000 30.4645 883.024
3,250 34.8372 1034.04
3,500 49.6497 1400.41
3,750 48.4852 1606.85
4,000 88.8478 2104.50
4,250 70.4305 2319.88
4,500 132.506 3094.30
4,750 82.0854 3180.42
5,000 108.178 4229.53
5,250 116.699 4377.80
5,500 133.606 5453.65

 0

 1000

 2000

 3000

 4000

 5000

 6000

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500

ru
nn

in
g 

tim
e 

in
 s

ec
on

ds

number of nodes

"VC-AoP" using 1:2
"BF-AoP" using 1:2

Fig. 2. Comparison of Vertex Contraction (VC), and Bellman-Ford (BF) Array of
Pointer (AoP) implementation execution times (seconds) required to solve the Negative
Cost Cycle problem for Type A graphs.
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Simple Pointer
(Time in Seconds)

n VC BF
500 0.003933 1.65399
750 0.007623 5.19749

1,000 0.009573 11.8637
1,250 0.023780 22.5836
1,500 0.013797 38.9001
1,750 0.013525 64.8949
2,000 0.022071 103.797
2,250 0.022178 155.955
2,500 0.025375 222.823
2,750 0.030861 304.137
3,000 0.040336 403.182
3,250 0.046731 519.489
3,500 0.047264 656.995
3,750 0.071233 814.206
4,000 0.063790 995.579
4,250 0.073681 1199.38
4,500 0.101693 1433.95
4,750 0.083590 1688.46
5,000 0.124874 1981.08
5,250 0.084357 2295.98
5,500 0.087477 2650.91
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Fig. 3. Comparison of Vertex Contraction (VC), and Bellman-Ford (BF) Simple
Pointer implementation execution times (seconds) required to solve the Negative Cost
Cycle problem for Type A graphs.

Array of Pointers
(Time in Seconds)

n VC BF
500 0.22578 2.80053
750 0.51732 9.40496

1,000 1.63598 25.2701
1,250 2.76916 52.7881
1,500 4.03085 103.765
1,750 4.58197 152.435
2,000 11.8345 253.484
2,250 20.4233 330.726
2,500 13.9014 502.027
2,750 23.9882 607.284
3,000 27.1102 875.921
3,250 35.6303 995.875
3,500 49.7201 1383.19
3,750 48.6051 1577.46
4,000 77.5183 2071.36
4,250 65.2763 2307.49
4,500 120.153 2978.97
4,750 83.6087 3209.21
5,000 92.0987 4076.75
5,250 151.066 4376.84
5,500 130.703 5408.41
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Fig. 4. Comparison of Vertex Contraction (VC), and Bellman-Ford (BF) Array of
Pointer (AoP) implementation execution times (seconds) required to solve the Negative
Cost Cycle problem for Type B graphs.
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Simple Pointer
(Time in Seconds)

n VC BF
500 0.004119 1.65394
750 0.008052 5.20284

1,000 0.011301 11.8367
1,250 0.022105 22.5755
1,500 0.099097 38.8326
1,750 0.022232 64.7921
2,000 0.021255 103.191
2,250 0.037886 154.749
2,500 0.026206 222.234
2,750 0.030613 303.657
3,000 0.037332 403.146
3,250 0.050565 518.724
3,500 0.047130 655.168
3,750 0.078139 813.916
4,000 0.188993 993.696
4,250 0.078959 1199.66
4,500 0.106838 1432.46
4,750 0.059203 1690.80
5,000 0.128170 1977.29
5,250 0.096562 2293.64
5,500 0.114865 2646.47
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Fig. 5. Comparison of Vertex Contraction (VC), and Bellman-Ford (BF) Simple
Pointer implementation execution times (seconds) required to solve the Negative Cost
Cycle problem for Type B graphs.

3.4 Conclusions

It is easy to see from the tables and graphs in Figure (2) through Figure (5)
that VC outperforms BF using either data structure; this is true for both types
of sparse graphs that were tested. We conclude that VC is far superior to BF
for sparse graphs.

An asymptotic analysis would indicate that BF is superior to VC for dense
graphs, although, our experiments contradict this indication.

3.5 Experimental Setup for Dense Graphs

Dense graphs were generated using the generator developed by Andrew Goldberg
[CG96]. Dense graphs were defined as those with Ω(n2

8 ) edges. We generated each
graph 5 times using 5 different seeds for the random number generator.

Graphs of Type C and D were tested, with a number of vertices ranging from
125 to 1,875 in increments of 125, with small negative cycles and long negative
cycles defined as in Section §3.3.
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Array of Pointers
(Time in Seconds)

n VC BF
125 0.03830 0.07012
250 0.05997 0.52512
375 0.15247 1.74020
500 0.28095 4.08695
625 0.46288 7.98574
750 0.65885 13.7706
875 1.48780 21.9978

1,000 1.55311 34.5631
1,125 2.97252 51.5897
1,250 3.37425 74.6079
1,375 4.37236 100.182
1,500 7.30295 132.641
1,625 6.22661 168.864
1,750 8.63348 210.632
1,875 8.00939 260.838
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Fig. 6. Comparison of Vertex Contraction (VC), and Bellman-Ford (BF) Array of
Pointer (AoP) implementation execution times (seconds) required to solve the Negative
Cost Cycle problem for Type C graphs.

Simple Pointer
(Time in Seconds)

n VC BF
125 0.00048 0.09019
250 0.00194 1.02020
375 0.00303 4.50625
500 0.00675 13.2450
625 0.00750 30.9083
750 0.01562 62.0953
875 0.03498 123.824

1,000 0.09200 293.591
1,125 0.11334 672.256
1,250 0.19100 1350.14
1,375 0.25657 2447.76
1,500 0.42457 4079.35
1,625 0.41033 6346.27
1,750 0.65944 9445.69
1,875 0.99798 13480.9
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Fig. 7. Comparison of Vertex Contraction (VC), and Bellman-Ford (BF) Simple
Pointer implementation execution times (seconds) required to solve the Negative Cost
Cycle problem for Type C graphs.
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Array of Pointers
(Time in Seconds)

n VC BF
125 0.00146 0.06872
250 0.06294 0.52747
375 0.21069 1.73264
500 0.30008 4.09149
625 0.65476 7.98092
750 0.74009 13.7807
875 2.03858 21.9476

1,000 1.50686 35.0864
1,125 3.64647 51.5824
1,250 3.17255 72.8195
1,375 6.92824 101.460
1,500 6.88772 133.293
1,625 6.67336 167.244
1,750 7.48221 212.698
1,875 15.9974 263.763
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Fig. 8. Comparison of Vertex Contraction (VC), and Bellman-Ford (BF) Array of
Pointer (AoP) implementation execution times (seconds) required to solve the Negative
Cost Cycle problem for Type D graphs.

Simple Pointer
(Time in Seconds)

n VC BF
125 0.00069 0.08752
250 0.00185 1.02023
375 0.00488 4.44321
500 0.00706 13.2395
625 0.01379 30.6152
750 0.01765 62.0956
875 0.05033 122.713

1,000 0.07456 293.617
1,125 0.20491 664.932
1,250 0.22301 1348.96
1,375 0.41339 2426.95
1,500 0.39452 4079.71
1,625 1.00850 6299.06
1,750 0.59050 9447.84
1,875 1.43688 13418.7
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Fig. 9. Comparison of Vertex Contraction (VC), and Bellman-Ford (BF) Simple
Pointer implementation execution times (seconds) required to solve the Negative Cost
Cycle problem for Type D graphs.

3.6 Conclusions

It is easy to see from the tables and graphs in Figure (6) through Figure (9) that
VC outperforms BF using either data structure; this is true with both types of
dense graphs that were tested. We conclude that VC is far superior to BF for
dense graphs.
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3.7 Experimental Setup for Cruel Adversary Graphs

The cruel adversary is generated by specifying the number of vertices in the
graph and the maximum cost for any edge.

For our experiments we generated graphs with vertices ranging from 125 to
1,875 in increments of 125.

Array of Pointers
(Time in Seconds)

n VC RVC BF
125 0.02168 0.05125 0.04738
250 0.16735 0.40114 0.34556
375 0.55377 1.35226 1.13898
500 1.29808 3.08334 2.66123
625 2.54713 6.22039 5.19088
750 4.38616 10.7309 9.02499
875 7.01832 15.6965 14.3931

1,000 10.9170 25.7463 23.6483
1,125 15.7832 37.1957 35.7989
1,250 21.9961 52.2092 54.5719
1,375 30.1900 71.4197 72.7322
1,500 41.3305 93.0058 94.8282
1,625 53.3580 66.8170 121.354
1,750 66.5882 147.186 152.360
1,875 83.2914 171.411 188.266
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Fig. 10. Comparison of Vertex Contraction (VC), Random Vertex Contraction (RVC)
and Bellman-Ford (BF) Array of Pointer (AoP) implementation execution times (sec-
onds) required to solve the Negative Cost Cycle problem for Type E graphs.

Simple Pointer
(Time in Seconds)

n VC RVC BF
125 0.06657 0.01769 0.04572
250 0.48752 0.09771 0.33976
375 1.61851 0.47191 1.11752
500 4.55655 0.53125 2.61450
625 10.2743 2.45196 5.06600
750 19.7552 3.40885 8.70514
875 33.6204 5.76912 13.7683

1,000 52.5211 7.97386 20.4959
1,125 76.4936 25.6282 29.0852
1,250 106.248 33.1245 39.9211
1,375 144.869 9.84373 53.0680
1,500 187.058 67.5207 69.8548
1,625 244.296 66.2070 91.4537
1,750 304.338 78.6134 118.606
1,875 379.341 29.4672 151.796
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Fig. 11. Comparison of Vertex Contraction (VC), Random Vertex Contraction (RVC)
and Bellman-Ford (BF) Simple Pointer implementation execution times (seconds) re-
quired to solve the Negative Cost Cycle problem for Type E graphs.
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3.8 Conclusions

VC does considerably better than both RVC and BF, as observed from the table
and graph in Figure (10) of the Array of Pointer implementation on Type E
graphs. The results of RVC and BF are similar with RVC doing better in most
instances.

VC does very poorly, as observed from the table and graph in Figure (11)
of the Pointer implementation on Type E graphs. RVC does much better than
VC and outperforms BF by a large margin on most instances. One conclusion
that can be drawn from the data is that the time taken by RVC varies greatly
depending on the random sequence of vertices chosen.

4 Conclusion

In this paper, we designed and analyzed a greedy algorithm called the vertex con-
traction algorithm (VC) for the negative cost cycle detection problem. Although
vertex contraction is asymptotically inferior to the Bellman-Ford algorithm on
sparse graphs, it is vastly superior from an empirical perspective.

We are currently working on two extensions: (a) Comparing our strategy
with the Goldberg approach, (b) Combining the main idea of our approach,
with heuristics such as contracting the vertex with the smallest degree-product.
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