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Abstract. We construct finite difference solutions of a transmission
problem with a discontinuous coefficient and the Dirac distribution by
the direct method which we call the successive elimination of lines and
then show that the limit function of them satisfies the transmission equa-
tion in the sense of distribution.

1 Introduction

This paper is devoted to the construction and the convergence of finite difference
solutions based on the direct method coupled with the fictitious domain method
([2],[9])and distribution theoretical argument ([1]).
Let Ω be a rectangular domain in R2, Ω1 be an open subset of Ω and Ω2 = Ω\Ω1,
the interface of them be denoted by Γ (= Ω1 ∩ Ω2) and Γ be of class C1. The
transmission problem considered here is the followings.

Problem I. For f ∈ L2(Ω), σ ∈ L2(Γ ) and g ∈ H1/2(∂Ω), find u ∈ H1(Ω)
such that

− div (a(x, y) ∇u) = f + σ δΓ in D′(Ω) , (1)

u = g on ∂Ω . (2)

Here we assume that the discontinuous function a is given by

a(x, y) = ε1 χΩ1(x, y) + ε2 χΩ2(x, y),

where εi > 0 is a parameter (i = 1, 2) and χΠ is defined by

χΠ(x, y) =
{

1 if (x, y) ∈ Π
0 if (x, y) /∈ Π

for any subset Π of Ω.
Equations (1) of this type are arisen in various contexts. One of such examples

can be found in the context of electricity and {ε1, ε2} is corresponding to the
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dielectric constant of the material {Ω1, Ω2}.
We now notice that Problem I is equivalent to the following problem II.

Problem II. Find λ ∈ H1/2(Γ ) and {u1(λ), u2(λ)} ∈ H1(Ω1) × H1(Ω2) such
that

− ε1 �u1(λ) = f in Ω1 , (3)

− ε2 �u2(λ) = f in Ω2 , (4)

u1(λ) = u2(λ) = λ on Γ , (5)

u2(λ) = g on ∂Ω , (6)

and

ε1
∂u1(λ)

∂ν
− ε2

∂u2(λ)
∂ν

= σ on Γ . (7)

Here ν is the unit normal vector on Γ directed from Ω1 to Ω2 .
Hence introducing the Dirichlet-Neumann map T defined by

T : H1/2(Γ ) � λ → ε1
∂u1(λ)

∂ν
− ε2

∂u2(λ)
∂ν

∈ H−1/2(Γ ),

Problem I is reduced to find λ satisfying

Tλ = σ . (8)

From this point of view, the purpose of this paper is to show how to solve
(8) directly.

This paper is organized as follows. Section 2 describes the finite difference
approximation of Problem I. Section 3 is devoted to our numerical algorithm from
the viewpoint of the successive elimination of lines coupled with the geometry
of domains Ω1 and Ω2. In Sect. 4, we shall prove the justification of the finite
difference scheme and finally discuss the convergence of approximate solutions
constructed in Section 3.

2 Finite Difference Approximation of Problem I

Without loss of generality we assume that g = 0 and that Ω is the unit square
in R2, i.e., Ω = {(x, y)| 0 < x, y < 1 }. Let h ∈ R be a mesh size such that
h = 1/n for an integer n and set ∆ x = ∆ y = h. We associate with it the set of
the grid points:

Ωh = {Pi,j ∈ R2 | Pi,j = (i h, j h), 0 ≤ i, j ≤ n},
Ωh = {Pi,j ∈ R2 | Pi,j = (i h, j h), 1 ≤ i, j ≤ n − 1}.

With each grid point Pi,j of Ωh, we associate the panel ω0
i, j with center Pi,j :

ω0
i,j ≡

(
(i − 1/2)h, (i + 1/2)h

]
×

(
(j − 1/2)h, (j + 1/2)h

]
, (9)
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and the cross ω1
i,j with center Pi,j :

ω1
i,j = ω0

i+1/2,j ∪ ω0
i−1/2,j ∪ ω0

i,j+1/2 ∪ ω0
i,j−1/2 (10)

where ei denotes the i th unit vector in R2 and we set

ω0
i±1/2,j = ω0

i,j ± h

2
e1, ω0

i,j±1/2 = ω0
i,j ± h

2
e2. (11)

Moreover using the datum in Problem I, we define




aE
i,j = 1

∆x∆y

∫
ω0

i+1/2,j

a(x, y) dxdy, aW
i,j = 1

∆x∆y

∫
ω0

i−1/2,j

a(x, y) dxdy,

aN
i,j = 1

∆x∆y

∫
ω0

i,j+1/2
a(x, y) dxdy, aS

i,j = 1
∆x∆y

∫
ω0

i,j−1/2
a(x, y) dxdy,

fi,j = 1
∆x∆y

∫
ω0

i,j
f(x, y) dxdy, σi,j = 1

∆ li,j

∫
Γ ∩ ω0

ij
σ(s) ds,

∆ li,j =
∫

Γ ∩ ω0
i,j

ds.

(12)
We then propose the discrete equation of Problem I as follows.

Problem F. Find {ui,j} (1 ≤ i, j ≤ n − 1) such that

− 1
∆x

(
aE

i,j
ui+1,j − uij

∆x − aW
i,j

uij − ui−1,j

∆x

)
− 1

∆y

(
aN

i,j
ui,j+1 − ui,j

∆y − aS
i,j

ui,j − ui,j−1
∆y

)
= fi,j + ∆li,j

∆x ∆y σi,j , 1 ≤ i, j ≤ n − 1.

(13)

Remark 1. The construction of solutions of Problem F will be discussed section
3. Then introducing the base function θi,j :

θi,j(x, y) =
{

1, (x, y) ∈ ω0
i,j

0, (x, y) /∈ ω0
i,j ,

we define the piecewise functions σh and uh by

σh =
∑n−1

i,j=1
∆li,j

∆x ∆y σi,j θi,j(x, y),
uh =

∑n−1
i,j=1 ui,j θi,j(x, y)

(14)

respectively. In section 4 we shall show that
(i) σh → σ · δΓ in D′(Ω),
(ii) uh → u weakly in L2(Ω), u ∈ H1(Ω), and
(iii) u is the solution of Problem I in the sense of distrubution.
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3 Construction of the Solution of (13)

3.1 Geometry of Domain and Principle of the Successive
Elimination of Lines

In this subsection we deal with the (n − 1) vectors {Ui} instead of the (n − 1)2

unknowns ui,j . For each i, set Ui = t[ui,1, ui,2, · · · , ui,n−1 ] (1 ≤ i ≤ n − 1).
From the equations (13), it follows that

(aW
i,j + aE

i,j + aS
i,j + aN

i,j) ui,j − aS
i,jui,j−1 − aN

i,jui,j+1

= aW
i,jui−1,j + aE

i,jui+1,j + (∆x)2 fi,j + σi,j · ∆li,j
(15)

Now fix i (1 ≤ i ≤ n − 1). Paying attention to the vector Ui in (15) and setting
aε

i,j = aW
i,j + aE

i,j + aS
i,j + aN

i,j , Problem F w.r.t. {ui,j} is reduced to Problem M
w.r.t. {Ui}.

Problem M. Find Ui (1 ≤ i ≤ n − 1) satisfying

Aε
i Ui = AW

i Ui−1 + AE
i Ui+1 + Fi (1 ≤ i ≤ n − 1) (16)

where U0 = 0, Un = 0, Fi is given by the data {f, σ} , Aε
i is a tridiagonal matrix

defined by

Aε
i =




aε
i,1 −aN

i,1 0 · · · · · · · · · 0

−aS
i,2 aε

i,2 −aN
i,2 0

...
...

...

0
. . . . . . . . . 0

...
...

... 0
. . . . . . . . . 0

...
...

... 0
. . . . . . . . . 0

...
...

... 0 −aS
i,n−2 aε

i,n−2 −aN
i,n−2

0 · · · · · · · · · 0 −aS
i,n−1 aε

i,n−1




(17)

and AW
i , AE

i are the diagonal matrices given by

AW
i = diag[aW

i,j ]1≤j≤n−1 and AE
i = diag[aE

i,j ]1≤j≤n−1 (18)

Remark 2. For each i(1 ≤ i ≤ n − 1), Aε
i is a symmetric matrix.

In fact, aN
i,j = aS

i,j+1 holds from the definition (12).

Moreover in order to reduce the numbers of equations of Problem M, we separate
unknown vector Ui into two parts considering the geometry of the domain Ω
and the interface Γ . We first introduce the set of interface lattice points Γh and
boundary lattice points ∂Ωh as follows;
(i) Γh = {Pi,j = (ih, jh) | Γ ∩ ω1

i,j 
= ∅},
(ii) ∂Ωh = Ωh \ Ωh.
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Division of the Unknown Vector {Ui}
For each Ui = {ui,j}1≤j≤n−1, we define U ′

i = {u′
i,j}1≤j≤n−1 and

Wi = {wi,j}1≤j≤n−1 as follows;

u′
i,j =

{
0 if Pi,j ∈ Γh

ui,j if Pi,j ∈ Ωh\Γh,
wi,j =

{
ui,j if Pi,j ∈ Γh

0 if Pi,j ∈ Ωh\Γh
(19)

and devide Ui into two parts by

Ui = U ′
i + Wi. (20)

We then introduce the new vector {Vi} defined by

Vi = AW
i U ′

i ( = AE
i U ′

i ) (1 ≤ i ≤ n − 1). (21)

From the definition of {U ′
i} and {Vi}, we get

Lemma 1. Aε
iU

′
i = B Vi, Aw

i U ′
i−1 = Vi−1 and AE

i U ′
i+1 = Vi+1 hold (1 ≤ i ≤

n − 1) . Here B is a block tridiagonal matrix in the discretization of the Laplace
operator in Ω with homogeneous Dirichlet boundary conditions. i.e., B = [bij ]
is an (n − 1) × (n − 1) tridiagonal matrix such that B = tridiag[−1, 4, −1].

Therefore the following equations are derived from Problem M, (17)-(21) and
Lemma 1.

Problem PN. Find {Vi , Wi} such that for i(1 ≤ i ≤ n − 1),

B Vi = Vi−1 + Vi+1 + Fi +
(

AW
i Wi−1 − Aε

i Wi + AE
i Wi+1

)
(22)

where V0 = Vn = W0 = Wn = 0.
Moreover in order to deduce the equation of {Wi} from Problem PN, we re-

view the princple of the successive elimination of lines. The following proposition
1 was proved under two assumptions

Assumption 1. Let B = tridiag[−1, 4, −1] ∈ R(n−1)×(n−1).

Assumption 2. Let Xi and Yi ∈ R(n−1) be satisfying the equations of the
form : B Xi = Xi−1 + Xi+1 + Yi (1 ≤ i ≤ n − 1).

Proposition 1. Under the above assumptions, Xk (1 ≤ k ≤ n − 1) is directly
determined by

Q Xk =
k−1∑
i=1

D n−k, i Q Yi +
n−1∑
i=k

D k, n−i Q Yi (23)

where each D l, i (1 ≤ l, i ≤ n − 1) is a diagonal matrix defined by

Dl,i = diag
[(

sinh(l λj) sinh(i λj)
)
/
(
sinh(n λj) sinh(λj)

)]
1≤j≤n−1

λj = arccosh(2 − cos(jπ/n)),
(24)
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and Q(= (qi,j)1≤i,j≤n−1) is the othogonal matrix such that

qi,j =

√
2
n

sin

(
i j π

n

)
(1 ≤ i, j ≤ n − 1). (25)

Remark 3. We call this proposition the princile of the successive elimination of
lines (see also [6],[7],[11]).

Remark 4. Set Qi =t (qi,1, qi,2, · · · · · · , qi,n−1) (1 ≤ i ≤ n − 1). Then
{Qi}1≤i≤n−1 is the orthonormal system, which is used in the next subsection.

3.2 Numerical Algorithm

In this subsection, we show our numerical algorithm by use of the principle of the
successive elimination of lines. First applying directly Proposition 1 to Problem
PN, we have

Lemma 2. Problem PN is equivalent to find {Vk, Wk}(1 ≤ k ≤ n − 1) satis-
fying

Q Vk =
∑k−1

i=1 Dn−k,i Q
(

AW
i Wi−1 − Aε

i Wi + AE
i Wi+1

)
+

∑n−1
i=k Dk,n−i Q

(
AW

i Wi−1 − Aε
i Wi + AE

i Wi+1

)
+

( ∑k−1
i=1 Dn−k,i Q Fi +

∑n−1
i=k Dk,n−i Q Fi

)
.

(26)

Using the orthogonal property of Q and the definitions of Vk and Γh, we get
tQl QVk = 0 for any l such that Pk,l ∈ Γh,

from which it follows

Lemma 3. {Wi}1≤i≤n−1 in (26) satisfies the equations (27):

∑k−1
i=1

tQl Dn−k,i Q
(

− AW
i Wi−1 + Aε

i Wi − AE
i Wi+1

)
+

∑n−1
i=k

tQl Dk,n−i Q
(

− AW
i Wi−1 + Aε

i Wi − AE
i Wi+1

)
= tQl

( ∑k−1
i=1 Dn−k,i Q Fi +

∑n−1
i=k Dk,n−i Q Fi

) (27)

for (k, l) such that Pk,l ∈ Γh.

Conversely one may have a question whether it is possible to construct {Vk, Wk}
uniquely satisfying (26) from the equation (27). But the answer is yes and we
shall prove it in the next section as the following theorem.

Theorem 1. There exists a unique solution {Wi}1≤i≤n−1 of the linear system
(27).

Hence the remainder part {Vk}1≤k≤n−1 of {Ui}1≤i≤n−1 is automatically com-
puted by Theorem 1 and Lemma 2. i.e.,
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Theorem 2. Vk is determined by

vk,l =
∑k−1

i=1
tQl Dn−k,i Q

(
AW

i Wi−1 − Aε
i Wi + AE

i Wi+1

)
+

∑n−1
i=k

tQl Dk,n−i Q
(

AW
i Wi−1 − Aε

i Wi + AE
i Wi+1

)
+ tQl

( ∑k−1
i=1 Dn−k,i Q Fi +

∑n−1
i=k Dk,n−i Q Fi

)
.

for (k, l) such that Pk,l ∈ Ωh\Γh.

Therefore we summarize our numerical algorithm.

Numerical Algorithm
1st step: Calculate the solution {Wi} on Γh of (27).
2nd step: Compute {Vk} on Ωh\Γh by use of the formulation in Theorem 2.

4 Convergence of Approximate Solutions

4.1 Function Space Vh

In order to justify our numerical scheme(13), we first define the piecewise func-
tion θα,β ( 0 ≤ α, β ≤ n) as follows;

θα,β(x, y) = θ(x − α h, y − β h) where θ(x, y) =
{

1, (x, y) ∈ ω0
0,0

0, (x, y) /∈ ω0
0,0 ,

and θ0,j = θn,j = θi,0 = θi,n = 0 (i, j = 1, · · · , n). We then introduce the function
space Vh generated by θi,j . i.e., φ ∈ Vh, is of the form:

φ(x, y) =
n−1∑
i,j=1

φi,j θi,j(x, y), φi,j ∈ R . (28)

We now introduce the following approximation {δ1
h, δ2

h, ∇h, (div)h} of {∂/∂x,
∂/∂y, ∇, div } .
(i) δ1

h, δ2
h : L∞(R2) → L∞(R2) are defined by

(δ1
h u)(x, y) = 1

h

(
u(x + 1

2h, y) − u(x − 1
2h, y)

)
,

(δ2
h u)(x, y) = 1

h

(
u(x, y + 1

2h) − u(x, y − 1
2h)

)
.

(ii) ∇h : L∞(R2) → (L∞(R2))2 is defined by

(∇h u)(x, y) =
(
(δ1

h u)(x, y), (δ2
h u)(x, y)

)
. (29)

(iii) (div)h : (L∞(R2))2 → L∞(R2) is defined by

(div)h (u(x, y), v(x, y)) = (δ1
h u)(x, y) + (δ2

h v)(x, y) (30)

for u, v ∈ L∞(R2).
Then the norm ‖ · ‖ in Vh is equipped as follows;

‖u‖ =
√

‖ u‖2
L2(Ω) + ‖∇h u‖2

L2(Ω) for u ∈ Vh, (31)

from which we get



Direct Method for Solving a Transmission Problem 395

Lemma 4. (i) Vh is a Hilbert space.

(ii)
(
δi
h u, φ

)
L2(Ω)

= −
(
u, δi

h φ
)

L2(Ω)
for u, φ ∈ Vh (i=1,2). (32)

Furthermore using the notations {aW
i,j , aS

i,j , fi,j , ∆li,j , σi,j} in (12), we define
approximate functions of a, f and σ respectively as follows:

aW
h (x, y) =

∑n−1
j=1

∑n
i=1 aW

i,j θi−1/2, j(x, y),
aS

h(x, y) =
∑n−1

i=1
∑n

j=1 aS
i,j θi, j−1/2(x, y),

fh(x, y) =
∑n−1

i,j=1 fi,j θi,j(x, y),
σh(x, y) =

∑n−1
i,j=1

∆ li,j

∆x∆y σi,j θi,j(x, y).

4.2 Approximate Solution in Vh of Problem I

In this subsection the approximate solution in Vh for Problem I is considered.
We first propose the following approximation of Problem I in Vh.

Problem V. Find uh ∈ Vh such that

− (div)h

(
aW

h (x, y) (δ1
h uh) , aS

h(x, y) (δ2
h uh)

)
(x, y)

= fh(x, y) + σh(x, y) for (x, y) ∈ ⋃n−1
i,j=1 ω0

i,j .
(33)

We then get a following relation between Problem F and Problem V.

Lemma 5. Problem F and Problem V are equivalent.

Proof. Using the notations in 4.1 and the property of the support for piecewise
functions, the equation (33) is of the form

− ∑n−1
i,j=1

(
1

∆x ( aE
i,j

ui+1,j − uij

∆x − aW
i,j

uij − ui−1,j

∆x )

+ 1
∆y ( aN

i,j
ui,j+1 − uij

∆y − aS
i,j

uij − ui,j−1
∆y )

)
θi,j(x, y)

=
∑n−1

i,j=1

(
fi,j + ∆li,j

∆x ∆y σi,j

)
θi,j(x, y)

for (x, y) ∈
n−1⋃
i,j=1

ω0
i,j . Hence this lemma holds.

Using the discrete Poincaré inequality and the trace theorem ([5]), we get

Proposition 2. There exists a unique function uh ∈ Vh satisfying (33).

The uniqueness of {Wi} in (27) is now proved.

Proof of Theorem 1. Assume that there are two solutions {Wi} and {W̃i}
satisfying the linear system (27). Then from Lemma 2, and (19)-(21), there
are two solutions {Ui} and {Ũi} of Problem F. But this is contradictory to
Proposition 2 by use of Lemma 5. Therefore the unique existence of the solution
{Wi} is ensured.
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4.3 Convergence Theorem

We proceed to discuss the convergence of {uh}.

Theorem 3. (i) There exists u ∈ H1
0 (Ω) such that uh → u weakly in L2(Ω).

(ii) u satisfies that for any φ ∈ D(Ω),
〈

− div
(

a ∇ u
)

, φ
〉

D′(Ω)
=

(
f, φ

)
L2(Ω)

+
(
σ, φ

)
L2(Γ)

(34)

Proof. We divide the proof into four steps.

Step 1. There exists a subsequence uh, also denoted by uh, such that
uh → u weakly in L2(Ω) and ∇h uh → ∇u weakly in L2(Ω).
In fact, it follows from the bilinear form of (33) in Vh and the discrete Poincaré
inequality.
Step 2. fh → f in L2(Ω) and aW

h → a a.e. in Ω, aS
h → a a.e. in Ω .

Because f ∈ L2(Ω) and a is continuous in Ω\Γ .
Step 3. σh → σ · δ(Γ ) in D′(Ω).
In fact, Set I ≡

〈
σh − σ · δ(Γ ), φ

〉
. Then

I =
n−1∑
i,j=1

∫
ω0

i,j

∆li,j
h2 σi,j φ(x, y) dxdy −

∫
Γ

σ(s)φ(x(s), y(s))ds

=
n−1∑
i,j=1

∫
ω0

i,j
∩Γ

σ(s) { 1
h2

∫
ω0

i,j

φ(x, y) dxdy} ds −
∫

Γ

σ(s)φ(x(s), y(s))ds.

Since φ ∈ D(Ω), there exists a point (xi,j , yi,j) in ω0
i,j such that

1
h2

∫
ω0

i,j

φ(x, y) dxdy = φ(xi,j , yi,j), 1 ≤ i, j ≤ n − 1.

Hence∣∣∣I
∣∣∣ =

∣∣∣
n−1∑
i,j=1

∫
ω0

i,j
∩Γ

σ(s) φ(xi,j , yi,j) ds −
∫

Γ

σ(s)φ(x(s), y(s))ds
∣∣∣

=
∣∣∣ ∫

Γ
σ(s)

n−1∑
i,j=1

[(φ(xi,j , yi,j) − φ(x(s), y(s)) θi,j(x(s), y(s))] ds
∣∣∣

≤
( ∫

Γ
|σ(s)|2 ds

)1/2 ( ∫
Γ

n−1∑
i,j=1

|φ(xi,j , yi,j) −

φ(x(s), y(s))|2 θi,j(x(s), y(s)) ds
)1/2

≤
( ∫

Γ
|σ(s)|2 ds

)1/2( n−1∑
i,j=1

∫
ω0

i,j
∩Γ

|(xi,j , yi,j) − (x(s), y(s))|2 ·

|∇φ|2L∞(Ω) ds
)1/2

≤ √
2 µ(Γ ) h |σ|L2(Γ ) · |∇φ|L∞(Ω) where µ(Γ ) =

∫
Γ

ds.
This shows the statement of Step 3.
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Step 4. For φ ∈ D(Ω), the equation

−
〈 ∂

∂x
( a

∂u

∂x
) +

∂

∂y
( a

∂u

∂y
) , φ

〉
D′(Ω)

=
(
f, φ

)
L2(Ω)

+
(
σ, φ

)
L2(Γ )

(35)

holds.
In fact, it follows from Proposition 2 that for sufficiently small h,(

− (div)h

(
aW

h (x, y) (δ1 uh) , aS
h(x, y) (δ2 uh)

)
(x, y), φ(x, y)

)
L2(Ω)

=
((

aW
h (x, y) (δ1 uh)(x, y) , aS

h(x, y) (δ2 uh)(x, y)
)
, ∇h φ(x, y)

)
L2(Ω)

=
(

fh(x, y) + σh(x, y), φ(x, y)
)

L2(Ω)
.

We then use the results from the Step1 to Step 3 and as h → 0 in the above
equation, we have
(

a
∂u

∂x
,

∂φ

∂x

)
L2(Ω)

+
(

a
∂u

∂y
,

∂φ

∂y

)
L2(Ω)

=
(
f, φ

)
L2(Ω)

+
(
σ, φ

)
L2(Γ )

. (36)

Therefore combining it with the distribution formula, Step 4 is shown.
Finally we are able to conclude that the full sequence {uh} converges weakly to
the solution u of Problem I since Problem I has a unique solution in H1(Ω) as
well known fact(cf. [8,10]).
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