
Network-Tree Model and Shortest Path
Algorithm

Guozhen Tan1, Xiaojun Han1, and Wen Gao2

1 Department of Computer Science and Engineering
Dalian University of Technology, 116024, China�

gztan@dlut.edu.cn
2 Institute of Computing Technology

Chinese Academy of Sciences, 100080, China

Abstract. For the first time, this paper proposes the Network-Tree
Model (NTM), route optimization theory and wholly new, high perfor-
mance algorithm for shortest path calculation in large-scale network. We
first decompose the network into a set of sub-networks by adopting the
idea of multi-hierarchy partition and anomalistic regional partition, and
then construct the NTM and the Expanded NTM. The Network-Tree
Shortest Path (NTSP) algorithm presented in this paper narrows the
searching space of the route optimization within a few sub-networks, so
it greatly reduces the requirements for main memory and improves the
computational efficiency compared to traditional algorithms. Experi-
ment results based on grid network show that NTSP algorithm achieves
much higher computational performance than Dijkstra algorithm and
other hierarchical shortest path algorithms.

Keywords: nNetwork-tree model, shortest path algorithm, large-
scale network, route optimization algorithm

1 Introduction

The shortest-path problem (SP) is a key problem of many fields [1] such as com-
puter science, transportation engineering, communication engineering, system
engineering, and operation research. Especially, the computing efficiency is the
bottleneck problem of route optimization for large-scale network. Furthermore,
the main memory requirement also is an important factor as to implement the
algorithm [2].

As known, there are two kinds of algorithms for shortest path computing, that
one is label-setting algorithm and the other is label-correcting algorithm, with
the representation of the classic Dijkstra algorithm and Bellman-Ford algorithm
respectively. All the other algorithms are the variations of these two kinds. People
have widely realized that all these algorithms cannot meet the requirements of
many applications when computing the shortest paths of large-scale network.
� This work was supported in part by Grand 99025 of Ministry of Education and

Grand 9810200104 of Liaoning Science Foundation, China.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 537–547, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

538 G. Tan, X. Han, and W. Gao

Partitioning the network and constructing new network model have become
a fast and effective methods for improving computations in large-scale networks
[3], which have been widely applied in many fields such as Intelligent Trans-
portation System (ITS), Graphic Information System (GIS) and route protocols
of network communication. Level graphs and associated approximate shortest
path algorithm were presented in [4,5,6], which significantly improved the com-
puting efficiency of path optimization. However, the level graph model cannot be
abstracted from any given graph, and the papers only provide the approximate
shortest path algorithm with the errors that cannot be overlooked. Hierarchical
Encoded Path View (HEPV) model can be found in [2,7], and a path-query al-
gorithm based on this model was proposed to precompute and store the shortest
path of each sub-network for later on-line query. It did not provide significant
improvement for route optimization of multi-level large-scale network. Further-
more, the method requires a large overhead main memory for storing the pre-
computed path information, which makes it impractical to use for calculating
the shortest path in a large-scale network.

For the first time, we present the new network-tree model and the associ-
ated network-tree shortest path (NTSP) algorithm to solve effectively the stor-
age requirement and efficiency problem of large-scale network optimization. The
prominent advantages of network-tree model and NTSP algorithm compared
to the previous ones can be founded in the following four aspects: (1) We can
construct the network-tree model from any network; (2) The regional partition
and hierarchical partition method of network-tree model is very useful to store
the network date both hierarchically and distributively; (3) The concept of tree
expresses clearly the internal relation among the sub-networks. (4) The route
optimization can be constrained within a few sub-networks, which can greatly
reduce the searching scope and significantly improve the computing efficiency.
So the main memory requirements of our algorithm are very limited.

The remainder of this paper is organized as follows: In Sect. 2, we present the
definitions of both the network-tree model and expanded network-tree model,
and the optimization theorem. In Sect. 3, we present the preprocessing proce-
dure and NTSP algorithm. The experiment result will be presented in Sect. 4.
Section 5 is the conclusions.

2 Network-Tree Model

Network-Tree Model is the definitional combination and expansion of network
and tree. Any network can be divided into a number of sub-networks, and each
sub-network will be constructed to one node of network-tree. Specially, the node
of network-tree is called macro-node to distinguish from the node of original
network.

2.1 Definition of Network-Tree Model

Let the network-tree be N Tree = (T,H), where T is the macro-node set of N .
If only one macro-node exists in T , H = φ, otherwise, H is a binary relation

Network-Tree Model and Shortest Path Algorithm 539

defined on T . There is only one macro-node mr called the root of N Tree. If
T − {mr} �= φ, there exists a division of T1, T2, · · · , Tn(n > 0), with ∀j �= k, 1 ≤
j, k ≤ n, Tj ∩ Tk = φ. For ∀i, 1 ≤ i ≤ n, the only macro-node mi ∈ Ti satisfies
< mr, mi >∈ H. As the counterpart of the T − {mr} division, there exists
the only division H1, H2, · · · , Hn of H − {< mr, m1 >, · · · , < mr, mn >}, with
∀j �= k, 1 ≤ j, k ≤ n, Hj ∩ Hk = φ. For ∀i, 1 ≤ i ≤ n, Hi is a binary relation
defined on Ti, and (Ti, Hi) is also a network-tree defined above, and we call it
the sub-tree of the root macro-node mr.

Next, we will present the method of network division and network-tree model
construction procedure from any network.

2.2 Construction of Network-Tree Model

Let the network be N = (V, A, W), where V is a finite set of nodes, A ∈ N × N
is a finite set of arcs, W = {w(a)|a ∈ A}, w is the mapping function of A → R+.
First, we assign levels to all arcs according to properties in the original network,
that is, we create a mapping function for arc set A.

Definition 1. ∀a ∈ A, ∃h ∈ I, I = {1, 2, · · · , k}, there exists a mapping function
f : A → I, which makes f(a) = h, where h is the level of arc a. And ∀h ∈ I,
which makes f−1 = {a|a ∈ A, f(a) = h} as a non-null space. Let the arc set of
level h be Ah, that is, Ah = f−1(h).

Generally, let A1 be the highest level arc set. The more importance in rank
in the network, the smaller value of arc level.

Based on the arc level, we create the network-tree N Tree = (T,H) from
the network N = (V, A, W). Let the A1 induced sub-network of N be the root
macro-node m1 of the network-tree, m1 ∈ T . If N −{m1} �= φ, we divide the sub-
network N − {m1} into n1 non-null sub-networks T11, T12, · · · , T1n1 by A1, and
for ∀p �= q, 1 ≤ p, q ≤ n1, we get T1p ∩ T1q = φ. Then ∀i, 1 ≤ i ≤ n1, abstract
the highest-level arcs from T1i to make the arc set A1i, let the A1i induced
sub-network of T1i and the node intersection set of T1i and m1 be the ith son
macro-node m1i of m1, that is m1i ∈ T , < m1, m1i >∈ H. If T1i −{m1i} �= φ, we
continue to divide the sub-network T1i − {m1i} into n1i non-null sub-networks
Tli1, T1i2, · · · , T1in by A1i, and for ∀p �= q, 1 ≤ p, q ≤ n1i, we get T1ip ∩ T1iq = φ.
Then ∀j, 1 ≤ j ≤ nli, abstract the highest-level arcs from T1ij to make the
arc set Alij , let the Alij induced sub-network of T1ij and the node intersection
set of T1ij and m1i be the jth son macro-node m1ij of m1i, that is m1ij ∈ T ,
< m1i, m1ij >∈ H. Follow the step above to continue the construction until we
get the network-tree model N Tree = (T,H).

We get the following definitions and properties of NTM.

Definition 2. In network-tree model N Tree = (T,H), any macro-node mc ∈ T ,
if there exists the parent macro-node mp ∈ T , that is, < mp, mc >∈ H, the node
set of mc∩mp is called the connecting node set of mc, denoted by Rmc . Obviously,
the connecting node set of the root macro-node is null.

540 G. Tan, X. Han, and W. Gao

Definition 3. The mapping function σ : V → T , for ∀v ∈ V , there exists the
only macro-node mi ∈ T , v ∈ V (mi) and v /∈ Rmi , then let (v, mi) ∈ σ, denoted
by σ(v) = mi, and we call σ the mapping from node of original network to
macro-node of network-tree.

Definition 4. The mapping function ϕ : V → I, ∀v ∈ V , let ϕ(v) denote the
level of node v, with the level number of the macro-node σ(v) in the network-tree
being the node’s level number. We assign the level number of root macro-node
to 1.

Property 1. ∀u, v ∈ V , let Tσ(u) be the sub-tree which root is σ(u), and mp

be the parent macro-node of σ(u), with mp being non-null. If σ(v) /∈ Tσ(u),
and there exists the path π = π1 = (v0 = u, v1, v2, · · · , vn = v) or π = π2 =
(v0 = v, v1, v2, · · · , vn = u) between u and v in the original network, then ∃vi,
0 < i ≤ n, with vi ∈ Rσ(u) ⊆ V (mp), and if π = π1, the path from u to vi must
be in Tσ(u), and if π = π2, the path from vi to u must be in Tσ(u).

Property 1 shows the special characteristics of path in network-tree, which
can be directly extracted from the construction procedure of network-tree.

2.3 Theory of Path Optimization

Let spN0(u, v) denote the shortest path from u to v in network N0, and l(π)
denote the distance of path π.

Definition 5. Network-tree model N Tree = (T,H), if for each sub-tree
T ′ of N Tree, with macro-node mr being the root of T ′, ∀u, v ∈ V (mr),
l(spmc

(u, v)) = l(spT ′(u, v)), thus N Tree is called Expanded Network-Tree
Model.

Definition 6. Network-tree model N Tree = (T,H), let the transitive closure of
macro-node m be Bm = {mp|(mp ∈ T) ∧ (mp = m ∨ (∃mq ∈ Bm)(< mp, mq >∈
H))}.

In Expanded Network-Tree Model, we get the following optimal theorem.

Theorem 1. In the Expanded Network-Tree Model, ∀s, t ∈ V , let Bσ(s), Bσ(t)
be the transitive closures of macro-nodes σ(s) and σ(t) respectively, and then
there must be l(spN (s, t)) = l(spBσ(s)∪Bσ(t)(s, t)), that is, at least one shortest
path from s to t in original network N exists in the sub-networks contained by
Bσ(s)) ∪ Bσ(t).

Proof. Let one of shortest paths from s to t in original network N be
spN (s, t) = (v0 = s, v1, v2, · · · , vn = t), so we only need to prove if spN (s, t)
does not exist in the sub-networks of Bσ(s))∪Bσ(t), we always can find the path
π from s to t in the Bσ(s)) ∪ Bσ(t), with l(π) = l(spN (s, t)).

We discuss the spN (s, t) repeatedly under the following three cases:
Case 1: when ϕ(s) > ϕ(t), let Tσ(s) be the sub-tree which root is σ(s), and mp

be the parent macro-node of σ(s), obviously mp �= φ and σ(t) /∈ Tσ(s). According
to the Property 1, there must be ∃vi, 0 < i ≤ n, with vi ∈ Rσ(s) ⊆ V (mp), and

Network-Tree Model and Shortest Path Algorithm 541

the path from s to vi exists in Tσ(s), so l(spTσ(s)(s, vi)) = l(spN (s, vi))). As
s, v ∈ σ(s), and according to the definition of expanded network-tree model,
l(spσ(s)(s, vi)) = l(spTσ(s)(s, vi)). Therefore, l(spσ(s)(s, vi)) = l(spN (s, vi)). Let
π = spσ(s)(s, vi) + spN (vi, t), and then l(π) = l(spN (s, t)). σ(s) ∈ Bσ(s), so
spσ(s)(s, vi) exists in Bσ(s). Let s = vi, and we continue to discuss the sub-path
spN (vi, t) until all sub-paths of π exist in Bσ(s) ∪ Bσ(t).
Case 2: when ϕ(s) < ϕ(t), Similar as the case 1, there must be ∃vi, 0 < i ≤ n,
with vi ∈ Rσ(t) ⊆ V (mp), and the path from vi to t exists in Tσ(t). Let π =
spN (s, vi)+spσ(t)(vi, t), with l(π) = l(spN (s, t)), and spσ(t)(vi, t) exists in Bσ(t).
Let t = vi, and we continue to discuss the sub-path spN (s, vi) until all sub-paths
of π exist in Bσ(s) ∪ Bσ(t).
Case 3: when ϕ(s) = ϕ(t), if σ(s) �= σ(t), discuss the path as case 1. And if
σ(s) = σ(t), that is, both s and t locate in the same macro-node, there exist
two case: A.When σ(s) is not the root macro-node of N Tree, if l(spσ(s)(s, t) =
l(spN (s, t)), let π = spσ(s)(s, t), with π being in the Bσ(s), satisfying the proof
requirements, and quit the discussion. Otherwise, there must be ∃vi, o < i < n,
with vi ∈ Rσ(s), and spN (s, vi) exists in the σ(s), that is, l(spσ(s)(s, vi)) =
l(spN (s, vi)). Let π = spσ(s)(s, vi) + spN (vi, t), and continue to discuss the rest
path spN (vi, t) as case 2. B.When σ(s) is the root macro-node of N Tree, then
π = spσ(s)(s, t), obviously l(π) = l(spN (s, t)), and π exists in Bσ(s), satisfying
the proof requirements, and quit the discussion.

Stated as above, the path π will exist in the sub-networks contained by
Bσ(s) and Bσ(t) after a finite number of discussions, with l(π) = l(spN (s, t)).
The theorem of route optimization builds theoretical bases for high performance
shortest path computing of large-scale network, and we only need to search a
few macro-nodes when computing the shortest path of Expanded NTM.

3 Shortest Path Algorithm of Expanded Network-Tree
Model

3.1 Preprocessing Procedure

We have presented the construction procedure from general network to network-
tree in the previous section, but the constructed network-tree cannot be guar-
anteed to be an expanded network-tree. Therefore we need a preprocessing pro-
cedure to create the expanded network-tree from network-tree. First we present
the definition of virtual arc.

Definition 7. In network model N = (V, A, W), ∀u, v ∈ V , let the virtual arc
from u to v be auv = (u, v, spN (u, v)), with w(auv) = l(spN (u, v)), that is, the
virtual arc is constructed by the shortest path between the corresponding two
nodes.

Preprocessing procedure will begin with the bottom level macro-nodes in
the network-tree, and process all the macro-nodes from bottom to top. For any
two connecting nodes in a macro-node m, if the shortest path between these two

542 G. Tan, X. Han, and W. Gao

nodes in m is less than the corresponding shortest path in the parent macro-node
of m, add the virtual arc between these two nodes in m to the parent macro-
node of m. We present the following recursive procedure, where the function
Djik(u, v, N0) denotes that we invoke the Dijkstra algorithm to calculating the
shortest path from u to v in the network N0.

Preprocessing Algorithm:
/* Input: the macro-node m*/
[1] : for each son macro-node ms of m do
[2] : Preprocess (ms);

end for;
[3] : if the parent macro-node mp of m not null then
[4] : for ∀u, v ∈ Rmdo
[5] : if Djik(u, v, m) < Djik(u, v, mp), then
[6] : new arc = (u, v, Djik(u, v, m)), mp = mp ∪ {new arc};

end if; end for; end if; end.

So we can invoke the preprocessing procedure to convert any network-tree to the
expanded network-tree, with the root macro-node of the network-tree being the
input macro-node. Obviously, the preprocessed network-tree is sure to be the
expanded network-tree.

3.2 Network-Tree Shortest Path (NTSP) Algorithm

There should be two steps in the NTSP algorithm: computing the transitive
closure B that the optimal path exists in and searching the optimal path in B.

We present the following NTSP algorithm, where the network model is the
expanded network-tree N Tree, and d[v] is the label of the shortest distance
from starting node s to the node v, and π(vi) represents the shortest path from
starting node s to node vi, and open is the set of temporarily-labeled node during
the searching procedure, and close is the set of permanently-labeled node.

NTSP Algorithm.
/* Input: Starting node s and destination node t; Output: The shortest path
from s to t */
[1] Initialization:

open = {s}, closed=φ; ∀v ∈ N Tree, d[v]=∞, d[s]=0;
∀i ∈ N Tree, πi = Null; B = φ, ms = σ(s),mt = σ(t) ;

[2] while ms �= φ do B=B+ms, ms = ms.parent;
[3] while mt �= φ do B=B+mt, mt = mt.parent;
[4] while open �= φ do
[5] vc = mind[v]{v|v ∈ open};
[6] open = open − {vc}, closed = closed + {vc};
[7] if vc = t then break;
[8] for each arc avcv in B emanating from vc do
[9] if d[v] > d[vc] + w(avcv) then
[10] d[v] = d[vc] + w(avcv);

Network-Tree Model and Shortest Path Algorithm 543

[11] if v /∈ open then open = open + {v};
end if ; end for; end while;

[12] if d[t] = ∞ then π(t) = null;
[13] return π(t), and algorithm terminates.

NTSP algorithm computes the transitive closure at step [2], [3], and B contains
the transitive closures of both macro-node σ(s) and σ(t). The searching proce-
dure always be constrained in B, satisfying the requirements of Theorem 1, so at
least one shortest path from s to t is sure to exist in the B. As the label-marked
searching technology is adopted, the algorithm will be able to find the shortest
path from s to t in B that is also the shortest path in original network according
to Theorem 1.

4 Experimental Results

4.1 Network-Tree Based on Lattice Structures

We present the following procedure to construct the network-tree N Tree based
on lattice structures, with k(k ≥ 2) being the level number of the network-tree,
lh and bh are integers, 1 ≤ h ≤ k, and w1 < w2 < · · · < wk−1 < wk.

I. Construct a
∏k

h=1 lh ×∏k
h=1 bh rectangular lattice, and place the lattice in the

first quadrant of the Cartesian plane, with the lower left corner corresponding
to (0, 0), and the lattice and Cartesian coordinates match;
II. The nodes of the lattice correspond nodes of the network; sides of the lattice
correspond to the bi-directional arcs of the network. The following sub-procedure
constructs the network-tree N Tree and assigns weight value to the arcs:

Step1: Abstract the nodes which abscissa can be divided exactly by
∏k

i=2 li or
which ordinate can be divided by

∏k
i=2 bi, and all the arcs between these nodes

to construct the root macro-node mr of N Tree. Let the weight of all these
arcs be w1. The rest network is divided into l1 × b1 sub-networks by mr, and
let the parent macro-node of these sub-networks be mr, and process all these
sub-networks as step2, with initially h = 2.

Step2: For each sub-network Nsub, if h = k, then let the whole sub-network Nsub

be a macro-node m of N Tree. Otherwise, in the sub-network Nsub, abstract the
nodes which abscissa can be divided exactly by

∏k
i=h+1 li or which ordinate can

be divided by
∏k

i=h+1 li, and all the arcs between these nodes to construct a
macro-node m. Let the parent macro-node of Nsub be the parent macro-node
of m, and the weight of all the arcs in m be wh. When h �= k, the sub-network
Nsub−{m} is divided into lh×bh smaller sub-networks, and let the parent macro-
node of all these new smaller sub-networks be m. Until all the sub-networks are
processed, then continue to the step3.

Step3: Let h = h+1, and if h > k, then go to the step4. Otherwise, go to step2
to process all the new smaller sub-networks.

544 G. Tan, X. Han, and W. Gao

Step4: The network-tree construction is completed.

For example, shown as Fig. 1, we create a network-tree based on lattice structures
with k = 3, l1 = b1 = 2, l2 = b2 = 3, l3 = b3 = 4, w1 = 2, w2 = 3 and w3 = 5.

(0,0)

X

Y

(24,0)

(24,24)(0,24)

9

9

9

9

Fig. 1. The example of network-tree construction based on lattice structures

4.2 Experimental Results

We will create a large number of origin and destination nodes (OD pairs) ran-
domly, and the computing efficiency will be measured by the average calculation

time, that is T =
∑n

i=1
Ti

n , with n being the number of OD pairs.
To better observe the algorithms’ computing performance when calculating

OD pairs of different distance, we define the test distance of OD pair: Let the
original node be s(xs, ys) and the destination node be t(xt, yt), We adopt the
Manhattan values as the test distance of this OD pair, that is |xt −xs|+ |yt −ys|.

Our experiment uses a Pentium IV personal computer running at 1.7 GHz
with 256 MB RAM. The operating system is Windows98; the programming
language is Visual C++ 6.0.

We present the following computing efficiency comparisons of NTSP , hier-
archical encoded path query (HEPQ), and Dijkstra algorithm.

Experiment 1. Comparison of NTSP , HEPQ, and Dijkstra algorithm with
two-level expanded network-tree under different test distances. The parameters
are set as k = 2, l1 = b1 = 6, l2 = b2 = 10, w1 = 2 and w2 = 5, thus the total
node number is 3721, the total arc number is 14876, results are demonstrated in
Fig. 2.

Network-Tree Model and Shortest Path Algorithm 545

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

av
g.

 c
om

pu
tin

g
tim

e
(m

ill
is

ec
on

ds
)

test distance

Dijkstra

HEPQ

NTSP

Fig. 2. Comparison of NTSP, HEPQ, and Dijkstra algorithm with two-level expanded
network-tree

Experiment 2. Comparison of three NTSP algorithms and Dijkstra algo-
rithm with three-level expanded network-tree under different test distances. The
parameters are set as k = 3, lh = bh = 6(1 ≤ h ≤ 3), w1 = 2, w2 = 4 and
w3 = 7, thus the total node number is 47089, the total arc number is 188348,
results are demonstrated in Fig. 3.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

av
g.

 c
om

pu
tin

g
tim

e
(s

ec
on

ds
)

test distance

Dijkstra

NTSP

Fig. 3. Comparison of NTSP algorithms and Dijkstra algorithm with three-level ex-
panded network-tree

546 G. Tan, X. Han, and W. Gao

Experiment 3. Comparison of NTSP algorithms, HEPQ and Dijkstra algo-
rithm under different network sizes. The parameters are set as k = 2, w1 = 2
and w2 = 5, and results are demonstrated in Table 1.

Table 1. The comparing result under different network sizes (seconds)

l1 = b1 = 4 l1 = b1 = 6 l1 = b1 = 8 l1 = b1 = 10 l1 = b1 = 12 l1 = b1 = 16
Size l2 = b2 = 5 l2 = b2 = 10 l2 = b2 = 10 l2 = b2 = 11 l2 = b2 = 12 l2 = b2 = 16

Nodes:441 Nodes:3721 Nodes:6561 Nodes:12321 Nodes:21025 Nodes:66049
Arcs:1756 Arcs:14876 Arcs:26236 Arcs:49276 Arcs:84092 Arcs:264188

Dijkstra 0.000913 0.012562 0.028487 0.065932 0.155256 1.371372
HEPQ 0.000776 0.004755 0.049369 ∞ ∞ ∞
NTSP 0.000413 0.002278 0.003710 0.006154 0.010132 0.026215

4.3 Interpretation of Results

The test results show the different computing performances of NTSP , HEPQ
and Dijkstra algorithm: Experiment 1 shows that the NTSP algorithm achieves
higher computing efficiency than HEPQ and Dijkstra algorithm under all the
test distances, especially with the network size increasing, such as Experiment 3,
under the best case the NTSP algorithm improved computing time by a factor of
50 over the Dijkstra algorithm. The spatial complexity of the HEPQ algorithm
is very high; therefore, the algorithm can accelerate the computing speed to a
certain degree when applying to small or general network (see Experiment 1),
but if the storage is constrained, the computing performance decreases when
the network size increases to a certain size. As Experiment 3 shows, when the
network size increases to 12,321 nodes, the HEPQ algorithm required more main
memory than our test computer could provide, and the algorithm was unable to
find a shortest path.

5 Conclusions

The network-tree model and NTSP algorithm provide a wholly new method to
effectively implement the optimization of large-scale network. The advantages
of network-tree model express not only at the great efficiency improvement of
shortest path computing, but also at the network data partition according to the
hierarchical characteristic and regional characteristic, which is very important
for many definite application areas.

The network-tree model and NTSP algorithms not only can be apply to the
path optimization of static network, but also can be expanded to the dynamic
optimal path searching of time-dependent network. The algorithms have an ex-
cellent parallel structure, and are well suited to realizing parallel computations
of the shortest path.

Network-Tree Model and Shortest Path Algorithm 547

References

1. Cherkassky B.V., Goldberg A.V., Radzik T.: Shortest paths algorithms: Theory and
experimental evaluation. Mathematical Programming, 1996, 73(2): 129–174

2. Ning Jing, Yun-Wu Wang, and Elke A. Rundensteiner: Hierarchical Encoded Path
Views for Path Query Processing: An Optimal Model and Its Performance Evalua-
tion. IEEE Transactions on Knowledge and Data Engineering, 1998, 10(3): 409–432

3. A.Car, G.Taylor, C.Brunsdon. An analysis of the performance of a hierarchical
wayfinding computational model using synthetic graphs. Computers, Environment
and Urban Systems, 2001, 25: 69–88

4. J. Shapiro, J. Waxman, D. Nir: Level Graphs and Approximate Shortest Path Al-
gorithms, Networks, 1992, 22: 691–717

5. Yu-Li Chou, H. Edwin Romeijn and Robert L. Smith: Approximating Shortest Paths
in Large-Scale Networks with an Application to Intelligent Transportation Systems,
INFORMS journal on Computing, 1998, 10 (2): 163–179

6. Chan-Kyoo Park, Kiseok Sung, Seungyong Doh, Soondal Park: Finding a path in
the hierarchical road networks. 2001 IEEE Intelligent Transportation Systems Con-
ference Proceedings-Oakland (CA) USA, August 25–29, 2001, pp. 936–942

7. A. Fetterer, S. Shekhar: A Performance Analysis of Hierarchical Shortest Path Al-
gorithms. IEEE Proceedings of the International Conference on Tools with Artificial
Intelligence, Nov 3–8, 1997, pp. 84–92

	Introduction
	Network-Tree Model
	Definition of Network-Tree Model
	Construction of Network-Tree Model
	Theory Of Path Optimization

	Shortest Path Algorithm of Expanded Network-Tree Model
	Preprocessing Procedure
	Network-Tree Shortest Path ($NTSP$) Algorithm

	Experimental Results
	Network-Tree Based on Lattice Structures
	Experimental Results
	Interpretation of Results

	Conclusions

