
Parallel Blocked Sparse Matrix-Vector
Multiplication with Dynamic Parameter

Selection Method

Makoto Kudo1, Hisayasu Kuroda2, and Yasumasa Kanada2

1 Department of Computer Science
Graduate School of Information Science and Technology

The University of Tokyo
2 Super Computing Division, Information Technology Center

The University of Tokyo
{mkudoh,kuroda,kanada}@pi.cc.u-tokyo.ac.jp

Abstract. A blocking method is a popular optimization technique for
sparse matrix-vector multiplication (SpMxV). In this paper, a new block-
ing method which generalizes the conventional two blocking methods
and its application to the parallel environment are proposed. This pa-
per also proposes a dynamic parameter selection method for blocked
parallel SpMxV which automatically selects the parameter set accord-
ing to the characteristics of the target matrix and machine in order to
achieve high performance on various computational environments. The
performance with dynamically selected parameter set is compared with
the performance with generally-used fixed parameter sets for 12 types of
sparse matrices on four parallel machines: including PentiumIII, Sparc
II, MIPS R12000 and Itanium. The result shows that the performance
with dynamically selected parameter set is the best in most cases.

1 Introduction

Sparse matrix-vector multiplication (SpMxV), y = y + Ax where A is a sparse
(N × N)-matrix, x and y are dense N -vector, is an important kernel which ap-
pears in many scientific fields. Since parallel computers have recently become
popular, most SpMxV computations have been executed on parallel environ-
ments. The computation time of SpMxV often accounts for significant part of
the total application time. Therefore, fast SpMxV routine is important for high
performance computing field. This paper proposes a parallel SpMxV routine in
which aggressive optimizations are exploited. The target machines range over
distributed memory parallel machines including clusters. SMPs are also consid-
ered via SPMD programming model. Each node is assumed to have memory
hierarchy of cache and memory.

In local computation part on each node, our routine uses blocking method
in order to efficiently exploit higher level memory. In addition to conventional
two blocking methods for SpMxV, a new blocking method which generalizes

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 581–591, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

582 M. Kudo, H. Kuroda, and Y. Kanada

those two methods is proposed. This proposed blocking method is applied to the
parallel environment.

There are several parameters that affect the performance of blocked parallel
SpMxV computation. The optimal parameter set highly depends on the charac-
teristics of target matrix and machine. Therefore, selecting the optimal param-
eter set according to these characteristics is important. The optimal parameter
set is automatically selected at the run time according to the characteristics of
target matrix and machine. Therefore, our routine can achieve high performance
on various computational environments.

2 Experimental Environments

The features of 4 parallel machines used in the experiment are shown in Table 1.
C language is used as a programming language. For communication library, MPI
library is used. The implementation of MPI library is MPICH [1] ver 1.2.1.

12 test sparse matrices are shown in Table 2. They are collected from Tim
Davis’ Sparse Matrix Collection [2] except the dense matrix of No. 12. Column
’Size’ is the dimension of the matrix. All matrices are square matrix. Column
’Nonzeros’ is the number of non-zero elements in the matrix. Column ’Density’
is the percentage of existence of non-zero elements.

3 Local Computation Optimization

A blocking method is a popular optimization technique for SpMxV on machines
that have memory hierarchy. Non-zero elements in sparse matrices from real-
world scientific fields are not randomly scattered, but often exist in dense blocks
[3]. By blocking such dense blocks, high performance of SpMxV can be achieved.
This blocking method is called as ‘Register Blocking’ [4], because its main focus
is efficient usage of the register memory. The blocking shape is generally rect-
angular. Since most of dense blocks in sparse matrices are small, a block size

Table 1. Machine’s architectures

Processor Intel SUN SGI Intel
Pentium III Ultra Sparc II MIPS R12000 Itanium

Clock 800 MHz 333 MHz 350 MHz 800 MHz
of PEs 8 (dual × 4) 8 8 8
Network 100 base-T Ethernet SMP DSM SMP
Compiler Portland SUN MIPSpro Intel

Group’s C compiler WorkShop Compiler Compiler Itanium
Compiler Version 3.2-3 5.0 7.30 5.0.1
Compiler Option -fast -xO5 -dalign -Ofast=ip27 -O3

-tp p6 -Mdalign -xtarget=native -TARG:proc=r10k
-Mvect= -xarch=v8plusa -TARG:isa=mips4

assoc,prefetch,nosse -xrestrict=all -r12000 -64

Parallel Blocked Sparse Matrix-Vector Multiplication 583

Table 2. Test matrix set

No. Name Description Size Nonzeros Density
1 pre2 Harmonic balance method 659033 5,959,282 0.00137
2 cfd2 CFD, symmetric pressure matrix 123440 3,087,898 0.0203
3 pwtk Stiff matrix 217918 11,634,424 0.0245
4 gearbox Aircraft flap actuator 153746 9,080,404 0.0384
5 venkat01 Flow simulation 62424 1,717,792 0.0441
6 nasasrb Structural engineering 54870 2,677,324 0.0889
7 ct20stif CT20 engine block 52329 2,698,463 0.0985
8 bcsstk32 Stiff matrix for automobile 44609 2,014,701 0.101
9 gupta2 Linear programming matrix 62064 4,248,286 0.110
10 3dtube 3D pressure tube 45330 3,213,618 0.156
11 gupta3 Linear programming matrix 16783 9,323,427 3.31
12 dense Dense matrix 3162 9,998,244 100

should also be small, such as 2 × 2 or 3 × 3. By blocking in such a small size
block, a usage of the highest level memory, register memory, can be optimized,
and the number of access to the column index array is reduced.

The access order to matrix data in blocked SpMxV computation changes
from non-blocked SpMxV. Therefore, the data format of sparse matrix is re-
constructed from Compressed Row Storage (CRS) format to Block Compressed
Row Storage (BCRS) format [5]. Array elements of non-zero values are reordered
to the accessing order, and column index array is also reconstructed.

There have been used two types of register blocking method so far. The
difference of these two methods is that whether zero elements in the original
sparse matrix can enter the block of the blocked matrix or they can not.

One of the conventional methods which does not allow zero elements entering
into the blocked matrix (we call this method as type 1 method) splits the original
matrix into two matrices, blocked matrix Ablock and remaining matrix Aremain

[6,7,8] (See the left of Fig. 1). We start searching blocks from the top-left of the
matrix to the right-bottom direction. If a dense block larger than the block size
r×c is found, it is stored into the blocked matrix Ablock. The dense block smaller
than the block size is not blocked and stored into the remaining matrix Aremain.
The data storage format of Aremain is CRS format. In this blocking method, the

Aoriginal

v v v v v v
v v v
v
v v

v v
v
v
v v
v

v

+

Ablock

v v
v v

v v
v v

v v
v v

A remain

v v v v

v
v

v

v

Aoriginal

v v v v v v
v v v
v
v v

v v
v
v
v v
v

v

Ablock

v v v v v v
v v
v v v
v v v

v v
v v v

0
0

0
0
0

0 0 0v

type 1 type 2

Fig. 1. The example of conventional two blocking methods (2 × 2)

584 M. Kudo, H. Kuroda, and Y. Kanada

total number of the non-zero elements is the same before and after the blocking.
Therefore, the number of floating-point number operations is also the same.
However, since the original matrix is split into two matrices, SpMxV operation
is computed twice. The performance may decline by overhead of two matrices
computation. Since blocks can not contain zero elements, an opportunity of
blocking many non-zero elements may be missed.

The other method of conventional blocking (type 2 blocking) is that even if
there are dense blocks in the original matrix whose size is smaller than block size
r × c, the elements are stored in the blocked matrix with padding zero elements
[4,9]. The original matrix is split into logical r × c blocks. If there is at least
one element in a logical block, that block is stored into the blocked matrix with
padding zero elements. If zero elements in the original matrix are blocked, these
zero elements are treated as non-zero elements in the blocked matrix (See the
right of Fig. 1). All the non-zero elements are blocked in this manner. The original
matrix is not split unlike the type 1 blocking. However, the number of non-zero
elements may increase. Therefore, the number of floating-point operations may
also increase, and it can cause performance decline.

3.1 The New Blocking Method

Assume that the original matrix is blocked with block size r × c. The type 1
blocking method makes block if there are at least rc elements in a block. And
the type 2 blocking method makes block if there is at least 1 element in a block.
We can easily find that the both methods are the parts of a general method
that if there are at least t elements in a block, that block is stored into the
blocked matrix. t is the threshold integer number. This generalized method is
our proposal method. This method uses the threshold number t, if the number of
non-zero elements in a block is larger than t, the block is stored into the blocked
matrix with padding zero elements if necessary. And if the number of non-zero
elements in a block is smaller than t, the block is stored into remaining matrix
in CRS format. This method does not miss the non-zero elements to be blocked
unlike the type 1 blocking, and does not increase a lot of non-zero elements
unlike the type 2 blocking. The example of blocking by this method with block
size 2 × 2 and threshold 2 is shown in Fig. 2.

Next, we show the effect of our new blocking method. The performance of
non-blocked SpMxV, that of conventional two methods and that of our new

Aoriginal

v v v v v v
v v v
v
v v

v v
v
v
v v
v

v

+

Ablock

v v
v v

v v
v v

v v
v v

A remain

v

v
v
v v v

v
v

0 0 0
0
0

Fig. 2. The example of proposed blocking method (2 × 2, 2)

Parallel Blocked Sparse Matrix-Vector Multiplication 585

Pentium III Sparc II

MIPS R12000 Itanium

Fig. 3. The performance of four types of SpMxV

method are shown in Fig. 3. The block sizes used in the figure are the best
block sizes that are selected by exhaustive search. The block sizes used in this
paper are from 1 × 2 to 8 × 8. From the result, it can not be said that one of
the conventional two methods are better for all cases. There are cases that the
difference of performance of type 1 and type 2 is more than 20 %. Therefore, it
can be said that fixing the blocking method to either of conventional two methods
is not a good idea. On the other hand, since our new method includes type 1 and
type 2, the performance of our new method is at least the same performance of
conventional two methods. In some cases, its performance is better than both of
conventional methods.

3.2 Selection of the Optimal Blocking Parameter Set

There are 3 parameters for our new blocking method, row size r, column size c
and threshold t. To achieve high performance, the optimal parameter set (r, c, t)
should be used. t can take from 1 to rc for the block size r × c. The number of
combinations which the parameter set (r, c, t) can take is 1926 for the block sizes
from 1 × 2 to 8 × 8. One of the selecting methods to find the best parameter
set is measuring the performance exhaustively for all parameter sets. As stated
before, the matrix data have to be reconstructed from CRS format to BCRS
format before the series of computation of blocked SpMxV.

The reconstruction operation takes about 10 times of non-blocked SpMxV
computation time in this study. Therefore, it takes more than 10,000 times of
non-blocked SpMxV computation time for exhaustive search. Since it is not
practical, the performance of the blocked SpMxV for a given parameter has to
be estimated without matrix data reconstruction.

586 M. Kudo, H. Kuroda, and Y. Kanada

3.3 The Blocking Parameter Selection Method

In this section, we propose a parameter selection method with performance es-
timation for our new blocking method. First, we define the performance esti-
mation formula. The formula calculates the estimated performance with param-
eter set (r, c, t), P (r, c, t). On the installation time of our routine, three types
of performance information have to be measured, performance of dense matrix
vector multiplication for each block size (Pdr,c (MHz)), performance of non-
blocked dense matrix vector multiplication (Pdnb (MHz)) and the sum of read
and write time to one element of floating-point array (Tac). Next, when the
target sparse matrix is given, the number of elements stored into the blocked
matrix (Nbr,c,t) and the number of elements stored into the remaining matrix
(Nrr,c,t) are counted.

If we use performance of blocked matrix as Pdr,c and performance of remain-
ing matrix as Pdnb, the whole performance of blocked SpMxV with parameter
set (r, c, t) is estimated as follows,

P (r, c, t) =






nnz
Nbr,c,t
P dr,c

+M ·Tac
, t = 1

nnz
Nbr,c,t
P dr,c

+
Nrr,c,t
P dnb

+2M ·Tac
, t > 1 (1)

where M is row size of matrix and nnz is the number of non-zero elements in
the original matrix. M · Tac means the access time to the destination vector, y.
Three variables in (1), Pdr,c, Pdnb and Tac have to be measured only once at the
installation time of the routine. However, Nbr,c,t and Nrr,c,t have to be counted
at the run-time after the target sparse matrix is given. Therefore, it is important
to quickly count these two variables. Next, we explain the fast counting method
of these two variables.

The original matrix is logically split into the r × c size blocks. Then, the
number of non-zero elements in each block is counted. Let nnzb be this value.
nnzb is counted for all the logical blocks, and then the number of blocks for
each nnzb is counted. That is, we collect the information that the number of
blocks whose nnzb = 1 is a and the number of blocks whose nnzb = 2 is b, etc.
Let br,c,i be the number of blocks whose nnzb = i (block size is (r × c)). The
two variables Nbr,c,t and Nrr,c,t in (1) are calculated by the following equation,
Nbr,c,t =

∑rc
i=t br,c,irc, Nrr,c,t =

∑t−1
i=1 br,c,ii. By using this counting method,

if we count br,c,i once for a block size, Nbr,c,t and Nrr,c,t of all the threshold
values for the block size can be quickly calculated by small number of integer
instruction.

P (r, c, t) for all the combination of (r, c, t) is calculated in this manner, and
the parameter set (r, c, t) with which P (r, c, t) is best is selected as the optimal
parameter set.

4 Data Communication Optimization

The matrix and vector data are distributed in the row block distribution manner
so that each processor has nearly the equal number of non-zero elements. On

Parallel Blocked Sparse Matrix-Vector Multiplication 587

parallel SpMxV computation, vector elements that reside on other processors
may be required. In such case, communication of vector data between processors
is necessary. Communication time becomes more dominant as the number of pro-
cessors becomes larger. Therefore it is important for parallel SpMxV operation
to reduce the communication time. In this paper, two communication methods
are used; ‘range limited communication’ and ‘minimum data size communica-
tion’. It is dependent on the non-zero structure of target matrix and machine’s
architecture which method is fast.

Range Limited Communication: By this communication method, processors
send only minimum contiguous required block (See the left of Fig. 4). Communi-
cations between processors that are not required are not sent. Since unnecessary
elements are often contained in the block, the communication data size is not
minimum on most cases. However, since this communication method does not
need local copy operation, the overhead time is small.

Minimum Data Size Communication: This method communicates only ele-
ments that have to be sent to other processors. (See the right of Fig. 4). Therefore
the communication data size is minimum. In order to complete communication
within two processors by one message passing, we need pack and unpack opera-
tions, because the elements to be sent are not placed consecutively in the source
vector. These pack and unpack operations require a little overhead time.

Range limited communication Minimum data size communication

Fig. 4. The range limited communication and the minimum data size communication
The black circles in PE0 represents the source vector elements that must be sent to PE1.
The gray circles are the dummy data that does not need to be sent to PE1 originally,
however, these elements also have to be sent in range limited communication.

4.1 Implementation of Communication Method

The range limited communication and minimum data size communication use
one to one communication. In this study, three implementation types of one to
one communication are used, ’Send-Recv’, ’Isend-Irecv’ and ’Irecv-Isend’. ’Send-
Recv’ uses MPI Send and MPI Recv functions. ’Isend-Irecv’ uses non-blocking
communication (MPI Isend and MPI Irecv). All the communication types im-
plemented in this study are summarized in Table 3.

588 M. Kudo, H. Kuroda, and Y. Kanada

Table 3. The communication Methods

Method Explanation
sendrecv R Range limited comm. with MPI Send and MPI Recv
isendrecv R Range limited comm. with non-blocking communication in send-receive order
irecvsend R Range limited comm. with non-blocking communication in receive-send order
sendrecv M Minimum data size comm. with MPI Send and MPI Recv
isendrecv M Minimum data size comm. with non-blocking communication in send-receive order
irecvsend M Minimum data size comm. with non-blocking communication in receive-send order

4.2 Application of New Blocking to the Parallel Environment

On single processor environment, blocking parameter set is selected by per-
formance estimation formula described in Sect. 3.3. This parameter selection
method is applied to parallel environment. The block size is selected by perfor-
mance estimation concurrently on each processor. That is, a processor selects
the block size with only information of the matrix data that is distributed to
the processor. Therefore, data communication is unnecessary on the blocking
parameter selection time. Because the estimated blocking parameter can differ
on each processor, each processor may select different blocking parameter set.

5 Numerical Experiment

5.1 The Dynamic Parameter Selection Method

We have implemented parallel SpMxV routine which has optimization techniques
on both local computation part and data communication part. It has four pa-
rameters that affect the performance of parallel SpMxV, the row size of the block,
the column size of the block, the threshold number and the data communication
method. The parameter set is selected automatically at the run time according
to the characteristics of matrix and machine in the following order, 1. Select
the communication method, 2. Select the blocking parameter set. First, all the
communication methods in Table 3 are executed and their time is measured.
The fastest communication method is selected as the optimal method. Next, the
blocking parameter set is selected by the selection method described in Sect. 3.3.

5.2 The Performance of Our Parallel SpMxV Library

To show the performance of our parallel SpMxV routine, the experimental results
are shown in this section. The performance with dynamically selected parameter
set is compared with the performance of fixed parameter sets that is generally
used for all matrices and machines. The two fixed parameter sets used in this
experiment are (No-blocking and isendrecv-M) and (2 × 2, 4 and isendrecv-M).

The computation time of parallel SpMxV is shown in Fig. 5.2. The time in the
figure is an average time of 8 processors. There are 3 bars for each matrix. The
left 2 bars are the time of fixed parameter sets. The right most bar is the time
of our routine of which parameter set is dynamicaly selected. All bars are scaled
so that the time of our routine becomes to 1.0. The light part of bar is the time

Parallel Blocked Sparse Matrix-Vector Multiplication 589

Pentium III Sparc II

MIPS R12000 Itanium

Pentium III Sparc II
No. Comm. Block sizes

MFLOPS r × c (t)
2 irecvsend M 2×1(2), 2×1(2), 2×1(2), 2×1(2)

216.56 2×1(2), 2×1(2), 2×1(2), 2×1(2)
4 irecvsend M 3×3(1), 5×2(8), 5×2(8), 5×2(8)

354.18 5×2(8), 3×3(1), 5×2(8), 5×2(8)
6 isendrecv R6×6(1), 2×6(1), 3×6(14), 2×6(1)

398.72 3×6(1), 3×6(14), 5×2(8), 2×6(1)
8 irecvsend M6×4(17), 5×2(8), 5×2(8), 5×2(8)

296.54 5×2(8), 5×2(8), 5×2(8), 5×2(8)
10 irecvsend M3×6(14), 3×3(1), 4×1(4), 5×2(8)

277.83 5×2(8), 3×3(1), 5×2(8), 5×2(8)

No. Comm. Block sizes
MFLOPS r × c (t)

2 irecvsend M2×2(3), 2×1(2), 2×1(2), 2×2(3)
133.60 2×2(3), 2×2(3), 2×2(3), 2×2(3)

4 irecvsend M3×3(1), 2×3(4), 2×3(4), 2×3(4)
103.37 2×3(4), 3×3(1), 2×3(4), 2×3(4)

6 irecvsend M6×1(1), 2×3(4), 6×1(4), 2×3(4)
235.25 3×6(1), 6×1(4), 6×1(4), 5×2(6)

8 irecvsend M6×1(4), 6×1(4), 6×1(4), 6×1(4)
207.35 8×1(4), 6×1(4), 8×1(4), 6×1(4)

10 irecvsend M3×3(6), 3×3(1), 4×1(3), 6×1(4)
272.05 6×1(4), 3×3(1), 6×1(4), 6×1(4)

MIPS R12000 Itanium
No. Comm. Block sizes

MFLOPS r × c (t)
2 irecvsend R 2×2(4), 2×1(2), 2×1(2), 2×1(2)

338.55 2×1(2), 2×1(2), 2×1(2), 2×2(4)
4 irecvsend M 3×3(1), 4×2(5), 4×2(5), 4×2(5)

304.91 4×2(5), 3×3(1), 4×2(5), 4×2(5)
6 irecvsend R 6×3(1), 2×6(1), 6×3(11), 2×6(1)

1115.22 3×6(1), 6×3(11), 6×3(11), 2×6(1)
8 irecvsend M 6×3(11), 4×2(5), 4×2(5), 4×2(5)

791.08 4×2(5), 4×2(5), 4×2(5), 4×2(5)
10 isendrecv R 3×3(1), 3×3(1), 4×2(5), 4×2(5)

636.33 4×2(5), 3×3(1), 4×2(5), 4×2(5)

No. Comm. Block sizes
MFLOPS r × c (t)

2 isendrecv R2×2(3), 1×2(2), 1×2(2), 2×1(2)
470.03 2×1(2), 2×1(2), 2×1(2), 2×2(3)

4 sendrecv M3×3(1), 1×3(1), 1×3(1), 1×3(1)
393.46 1×3(1), 3×3(1), 1×3(1), 1×3(1)

6 sendrecv R 6×6(1), 2×6(1), 1×6(1), 2×6(1)
947.61 3×6(1), 1×3(1), 1×6(1), 2×6(1)

8 sendrecv M2×2(1), 4×2(6), 4×2(6), 4×2(6)
735.68 3×4(8), 4×2(6), 4×2(6), 4×2(6)

10 isendrecv R3×3(1), 3×3(1), 2×3(1), 1×3(1)
699.75 1×3(1), 3×3(1), 1×3(1), 1×3(1)

Fig. 5. The performance of parallel SpMxV and selected parameters. The graph shows
time of parallel SpMxV with each parameter set. All bars are scaled so that the time
with auto-tuned parameter set becomes to 1.0. There are 3 bars for each matrix. The left
most bar shows time with parameter set (No-blocking and isendrecv-M). The middle
bar shows time with parameter set (2 × 2, 4 and isendrecv-M). The right most bar
shows time with auto-tuned parameter set. The table shows the selected parameter set
which is selected by auto-tuning system

590 M. Kudo, H. Kuroda, and Y. Kanada

of local computation. The dark part of bar is the time of data communication.
Parameter sets selected by the dynamic parameter selection method for matrix
nos. 2, 4, 6, 8 and 10 are also shown in Fig. 5. From the result, we can see that
the performance of our library is the best in 41 cases among the 48 cases.

The cost of parameter selection is evaluated as the ratio of parameter selec-
tion time to the basic parallel SpMxV time that uses a non-optimized parameter
set (MPI Allgather communication and Non-blocking SpMxV kernel). The pa-
rameter selection cost is about 40-100 times of basic parallel SpMxV time in this
experiment.

6 Concluding Remarks

We have developed a parallel sparse matrix-vector multiplication (SpMxV) rou-
tine. The local computation on each node uses a new blocking method which gen-
eralizes conventional two blocking methods in order to efficiently exploit higher
level memory. From the experimental result, it has been shown that our new
blocking method is equal or better compared with the conventional two methods.
On data communication part, six types of data communication methods have
been implemented. The parameter set such as blocking size and data communi-
cation type is selected automatically by dynamic parameter selection method at
the run time according to the characteristics of matrix and machine.

The performance of our parallel SpMxV routine with dynamically selected
parameter set has been compared with the performance with fixed parameter
sets that are generally used for all machines and matrices. The experimental
result has shown that the performance of our routine is the fastest in most
cases. Therefore, it can be said that the dynamic parameter selection method
works well and our parallel SpMxV routine is high performance for various kinds
of sparse matrices and on many types of computers.

As future work, it would be important to develop the faster and more accurate
parameter selection method.

References

1. William, G., Lusk, E.: (User’s guide for mpich, a portable implementation of mpi)
2. Davis, T.: University of florida sparse matrix collection (1997) NA Digest, vol. 97.,

Jun 1997. http://www.cise.ufl.edu/˜davis/sparse/.
3. White, J., Sadayappan, P.: On improving the performance of parallel sparse matrix-

vector multiplication. In: Proceedings of Supercomputing’97, San Jose, CA (1997)
4. Im, E.: Optimizing the Performance of Sparse Matrix - Vector Multiplication. PhD

thesis, University of California at Berkeley (2000)
5. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,

V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (1994)

http://www.cise.ufl.edu/~davis/sparse/

Parallel Blocked Sparse Matrix-Vector Multiplication 591

6. Geus, S.R.R.: Towards a fast parallel sparse matrix-vector multiplication. In: Par-
allel Computing: Fundamentals & Applications, Proceedings of the International
Conference ParCo’99, 17–20 August 1999, Delft, The Netherlands. (2000) 308–315

7. Pinar, A., Heath, M.T.: Improving performance of sparse matrix-vector multiplica-
tion. In: Proceedings of Supercomputing’99. (1999)

8. Toledo, S.: Improving the memory-system performance of sparse-matrix vector
multiplication. IBM Journal of Research and Development 41 (1997) 711–725

9. Vuduc, R., Demmel, J.W., Yelick, K.A., Kamil, S., Nishtala, R., Lee, B.: Perfor-
mance optimizations and bounds for sparse matrix-vector multiply. In: Proceedings
of Supercomputing 2002. (2002)

	Introduction
	Experimental Environments
	Local Computation Optimization
	The New Blocking Method
	Selection of the Optimal Blocking Parameter Set
	The Blocking Parameter Selection Method

	Data Communication Optimization
	Implementation of Communication Method
	Application of New Blocking to the Parallel Environment

	Numerical Experiment
	The Dynamic Parameter Selection Method
	The Performance of Our Parallel SpMxV Library

	Concluding Remarks

