
Parallelization of the Discrete Gradient Method
of Non-smooth Optimization and Its

Applications

G. Beliakov1, J.E. Monsalve Tobon2, and A.M. Bagirov2

1 School of Information Technology, Deakin University, 221 Burwood Hwy.
Burwood 3125, Australia, gleb@deakin.edu.au

2 Centre for Informatics and Applied Optimization
School of Information Technology and Mathematical Sciences

The University of Ballarat, Victoria 3353, Australia
esteban@caribe.apana.org.au,a.bagirov@ballarat.edu.au

Abstract. We investigate parallelization and performance of the dis-
crete gradient method of nonsmooth optimization. This derivative free
method is shown to be an effective optimization tool, able to skip many
shallow local minima of nonconvex nondifferentiable objective functions.
Although this is a sequential iterative method, we were able to parallelize
critical steps of the algorithm, and this lead to a significant improve-
ment in performance on multiprocessor computer clusters. We applied
this method to a difficult polyatomic clusters problem in computational
chemistry, and found this method to outperform other algorithms.

1 Introduction

Numerical optimization is a generic task in the core of many models in science.
One important example comes from theoretical chemistry, where a potential
energy of a molecule as a function of individual atom positions, needs to be
minimized to find the most stable conformation of this molecule. Instances of
this problem appear in studies of molecular conformations, protein folding, poly-
atomic clusters, etc. [11,13,15]. One characteristic feature of many such models is
very complicated objective function, which usually comes in the form of a black-
box (i.e., a third party proprietary software), and very few assumptions can be
made about it. Derivatives, even if they formally exist, are extremely difficult
to express analytically, since most molecular descriptions involve some internal
sets of coordinates, not readily expressed in terms of optimization variables [1,
7,11]. Moreover, not all models involve smooth functions. It is therefore quite
important to have very robust, effective derivative free optimization algorithms,
which do not rely on assumptions about certain properties of the objective func-
tion (such as differentiability), as these may turn out to be wrong. In this paper
we study one such method, called Discrete Gradient (DG) [3,4].

The typical number of variables in molecular conformation problems ranges
from several dozens to several hundreds, and the potential energy surface (PES)

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 592–601, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Parallelization of the Discrete Gradient Method of Non-smooth Optimization 593

is very rugged, involving multiple local minima and other stationary points. This
makes optimization procedure computationally very expensive, which dictates
the need for parallelization [9].

Multiprocessor clusters are a viable (and inexpensive) alternative to tradi-
tional supercomputers. The gain in performance is achieved by executing parts of
the algorithm in parallel on different processors, and then merging the results.
There are tools for automatic parallelization of serial program code, however
given that optimization methods based on descent are serial in their very nature
(i.e., iteratively moving from one point to a better one along the direction of
descent), these tools are likely to fail in such cases. It is necessary to have a
good understanding of the algorithm to identify those few opportunities that
can help improve performance of serial algorithms.

After briefly describing the main ideas behind the Discrete Gradient method
(for in-depth mathematical treatment refer to [3,4]), we discuss the ways in
which parts of this method can be parallelized, and their limitations. We will
then present results of some numerical experiments, which confirm the success of
our strategies. In the last section we discuss application of DG to one benchmark
problem in computational chemistry, that of polyatomic clusters. We will briefly
introduce this application, show how it can be solved using DG, and compare
our results to previous approaches.

2 Discrete Gradient Method

Non-smooth optimization is an important area of mathematical programming.
As the name implies, no assumptions about differentiability of the objective
function are made. This is frequently the case where the objective function f
is piecewise continuously differentiable or given as a black-box, possibly as a
solution of another complicated problem. We only assume Lipschitz continuity
of f .

Many methods of smooth optimization, when all involved functions are as-
sumed to be continuously differentiable or twice continuously differentiable, are
based on gradient, Hessian or their various approximations. In nonsmooth opti-
mization functions involved are no longer continuously differentiable. Nonsmooth
analysis is a theoretical basis for nonsmooth optimization. Comprehensive de-
scription of nonsmooth analysis can be found, for example, in [5,6]. The notion of
a subgradient is one of the key notions in nonsmooth analysis. The subgradient
is a generalization of the notion of a gradient for Lipschitz continuous functions.
The set of subgradients is called a subdifferential. Different generalizations of
gradient were proposed and studied by many authors. Two of them: the Clarke
subdifferential and Demyanov-Rubinov quasidifferential are widely used. In this
paper we will consider a version of the discrete gradient method which based on
the approximations to the quasidifferential. First we recall the definition of the
quasidifferential.

Let f be a Lipschitz continuous function defined on an open set X ⊂ IRn,
where IRn is n-dimensional Euclidean space. This function is called directional

594 G. Beliakov, J.E. Monsalve Tobon, and A.M. Bagirov

differentiable at a point x ∈ X if the limit

f ′(x, g) = lim
α→+0

α−1[f(x + αg) − f(x)]

exists for any g ∈ IRn. The function f is called quasidifferentiable at a point
x ∈ X if it is directionally differentiable and there exist compact, convex sets
∂f(x) and ∂f(x) such that

f ′(x, g) = max
v∈∂f(x)

〈v, g〉 + min
w∈∂f(x)

〈w, g〉.

Here 〈·, ·〉 stands for a scalar product in IRn. The pair Df(x) = [∂f(x), ∂f(x)]
is called a quasidifferential of the function f at a point x. The set ∂f(x) is said
to be a subdifferential and the set ∂f(x) a superdifferential of the function f at
a point x.

Let a function f be quasidifferentiable at x ∈ IRn. For point x to be a
minimum point of f on IRn it is necessary that

− ∂f(x) ⊂ ∂f(x). (1)

A point x ∈ IRn satisfying (1) is called an inf-stationary point of the function f
on IRn. If x ∈ IRn is not an inf-stationary point then

−∂f(x) �⊂ ∂f(x)

and
max

w∈∂f(x)
min

v∈∂f(x)
‖v + w‖ > 0.

Then the direction g0 = −‖v0 + w0‖−1(v0 + w0) where

‖v0 + w0‖ = max
w∈∂f(x)

min
v∈∂f(x)

‖v + w‖ > 0,

is a direction of steepest descent. Thus, we need to compute the entire quasid-
ifferential of the function f to define the steepest descent direction. However,
often it is impossible.

In [4] a method for minimizing quasidifferentiable functions based on the
notion of a discrete gradient is developed. The discrete gradient is a finite differ-
ence estimate to a subgradient. Unlike many other finite difference estimates to
a subgradient the discrete gradient is defined with respect to a given direction
which allows one to get good approximation for the quasidifferential.

In [4] an algorithm for the calculation of the descent direction of a quasidiffer-
entiable function by using discrete gradients is proposed. This is a terminating
algorithm, i.e. it calculates discrete gradients step by step, and after a finite
number of iterations either the descent direction is calculated, or it is found that
the current point is an approximate stationary point. In the discrete gradient
method Armijo’s algorithm is used for a line search [2].

Parallelization of the Discrete Gradient Method of Non-smooth Optimization 595

The discrete gradient method proceeds as follows. At a given approximation,
it calculates the descent direction by calculating the discrete gradients step by
step, and improving the approximation of the Demyanov-Rubinov quasidifferen-
tial. Once the descent direction is calculated, Armijo’s algorithm is used for line
search. The local minimum in this direction is chosen as the next approximation.
Detailed treatment of this method is in [3,4].

A key step in the discrete gradient is the calculation of the descent direction.
We calculate it using approximations to the subdifferential and superdifferential.
This problem is reduced to a certain quadratic programming problem which is
solved repeatedly at each iteration.

One of the characteristic features of DG method is its ability to ”skip” many
shallow local minima of the objective function, and converge if not to the global,
to a deep local minimum. This feature is particularly important for difficult mul-
tiextrema optimization problems, such as those that arise in theoretical chem-
istry. The number of local minima in these problems can be of order 1020, most
of them shallow and not important from the chemical point of view. This feature
has been predicted from theoretical point of view, but in this study we empiri-
cally demonstrated that this is actually the case. We compared DG method with
another derivative free local method (which does converge to the nearest local
minimum), and found that DG converges to a ”better” solution (see Sect. 5).

Fig. 1. Improvement in CPU time (with respect to run on a single processor) as a
function of the number of processors and number of variables

596 G. Beliakov, J.E. Monsalve Tobon, and A.M. Bagirov

3 Parallelization Strategies

The need for parallelization stems from the high computational cost of multi-
variate non-smooth optimization problems, and the need to solve these problems
many times (e.g., as part of another algorithm). However, since the optimization
strategies based on iterative descent are not parallel in their nature, there is
only limited scope for parallelization. In the case of Discrete Gradient method,
we identified two places, where the algorithm spends considerable time, that
could be parallelized.

The way the algorithm computes the discrete gradient is by taking n val-
ues of the function (n is the number of variables), in the neighborhood of a
current approximation, in the dynamically calculated directions. Then, two sets
(approximations to the subdifferential and superdifferential) of points are built
using these values. A subproblem of calculating the minimal distance from one
set to the convex hull of the other is solved. The latter is a quadratic program-
ming problem, and a terminating Wolfe’s algorithm is used for this purpose. In
degenerate cases, one of the sets may collapse into a point (the origin).

One obvious place to parallelize the algorithm is the Wolfe’s algorithm [19],
which solves a quadratic programming problem. A collection of such problems
needs to be solved and this can be done in parallel. However, it is necessary to
supply various processors with the coordinates of all the points from the two sets,
and these are computed dynamically. The second opportunity to parallelize the
algorithm is in computing n+1 values of the function in the neighborhood of the
current approximation. This improvement would have a big impact on problems
with complicated objective function, such as those coming from chemistry.

We implemented both parallelization strategies using the Message Passing
Interface (MPI) standard [18]. Running DG algorithm on m processors, one of
the processors takes the role of the main driver (master), and the rest take the
role of workers (slaves). Master processor distributes the work to slaves and then
merges the results. Since usually m < n, slaves will usually have more than one
basic task to complete. These tasks (computing the value of the function and
finding the shortest distance from a base point to a polytope) are not equiva-
lent among themselves: the objective function may have different computational
complexity depending on the argument, and Wolfe’s algorithm for different base
points may finish earlier. Therefore allocating the same number of basic tasks to
slave processors is not appropriate, since the slowest processor will be the bottle-
neck. Instead, the slave processors query to a queue of tasks maintained by the
master processor. Thus, processors that finished their tasks early are not idle,
and processors with more computationally expensive tasks have fewer tasks.

Of course, the serial part of the algorithm becomes its bottleneck, and we
did not hope to achieve complete parallelization of this essentially serial algo-
rithm. However, parallelization of expensive parts of the serial algorithm yielded
substantial improvements. The gain in computing time is illustrated in Fig. 1.

Of course, there is no much point in having more processors than the number
of variables n, and for m = n, the slowest processor will dominate the speed of the
algorithm. There is an optimal value for the ratio m/n, but it varies much with

Parallelization of the Discrete Gradient Method of Non-smooth Optimization 597

the objective function. This optimal ratio can be found empirically for a class of
objective functions, and subsequently used in cases where multiple optimization
tasks are performed (i.e., optimizations from various initial approximations).

4 Application: Polyatomic Clusters Problem

In this section we discuss one practical application of DG, which came from
theoretical chemistry. This problem is well studied, it is easy to formulate (but
extremely difficult to solve), and it serves as a benchmark for optimization algo-
rithms. Its variations are also important on their own (e.g., in studies of noble
gases, interstellar dust), and as subproblems in other models, such as protein
folding problem [8,10,12,16,17].

The simplest instance of this problem is the Lennard-Jones cluster problem.
It consists in finding the geometry of a cluster of N identical particles loosely
bound by interatomic forces. The optimal geometry minimizes the potential
energy of the cluster, expressed as a function of Cartesian coordinates

E(x, y, z) =
N∑

i=1

N∑

j=i+1

v(rij) (2)

The pairwise potential (the Lennard-Jones potential) is given by

v(rij) =

(
1

r12
ij

− 1
r6
ij

)
(3)

where
rij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2.

Variations of this problem include Carbon C60 clusters, water molecule clus-
ters, An -clusters, etc., these are presented in [17].

The objective function of the Lennard-Jones problem (2) is very simple to
compute, but it has extremely complicated landscape, with huge number of local
minima (for the 147 atoms problem). The number of variables for an N -atom
problem is 3N − 6 (accounting for 3 translations and 3 rotations). There are at
least N ! global minima (due to permutations of identical atoms).

Even though the objective function is smooth, the ability of DG to skip
many local minima will be of great value (it is indeed the case as shown in
Sect. 5). Traditional approach to this problem is to build clusters incrementally,
by using the solution for N − 1 atom problem as the initial approximation to
the N -atom problem [10,16]. Most of the optimal geometries follow this rule,
however in special cases (such as N = 38, 75, 76, 77, . . .) this rule is broken, and
solution, say at N = 38 is completely different from that of N = 37. Hence these
special ”difficult” clusters essentially require random starting points and serve
as benchmarks for many optimization algorithms [10].

598 G. Beliakov, J.E. Monsalve Tobon, and A.M. Bagirov

One approach taken in [10] is to modify the Lennard-Jones potential with a
penalty, favoring compact clusters

v̄(r) =
(

1
r12 − 1

r6 + µr + β max{0, r2 − D2}
)

(4)

µ, β and D are penalty parameters. The authors of [10] reported that first min-
imizing the modified objective function, and then using its minimum as the
initial approximation to the original problem yielded convergence to the global
minimum with much greater success than starting local optimization with ran-
dom points (Table 1). Thus, the expected number of runs for locating the global
minimum is substantially smaller. This can be projected to other instances of
polyatomic clusters problem [8,10,17].

In our study we followed the penalty approach from [10], but used DG rather
than other local optimization technique. The ability of DG to skip local minima
paid off, and the global minima were located with higher frequency than that
of [10].

5 Results

In this section we present three types of results of numerical experiments with
the Discrete Gradient method. The first result relates to parallelization of the
algorithm. Figure 1 presents improvements in CPU time taken by our imple-
mentation of the DG method running on the specified number of processors. As
the objective function, the Lennard-Jones clusters problem (2) was taken for the
specified number of variables. Ideally the improvement should be linear in the
number of processors, but interprocessor communications and serial parts of the
algorithm reduce it. This value can become smaller than 1 (loss in efficiency). It
is clear from the plot that running DG in parallel on a number of processors is
warranted only for a relatively high number of variables.

The second result illustrates the ability of DG to skip shallow local minima.
We used the Lennard-Jones clusters problem with N = 10 (24 variables) as the
objective function. The true global minimum is at f = −28.42. We started DG
and another local derivative free method UOBYQA by M.J.D. Powell [14] from
the same randomly chosen initial points, and compared the local minima both
methods converged to. Figure 2 presents the plot of values at local minima of one
method against the other. Points on the diagonal correspond to both methods
converging to the same local minimum, whereas points above the diagonal mean
the DG has found a better minimum. Figure 3 shows the frequency of locating a
minimum in a given interval starting from a random point. It is clear from both
plots that DG systematically converges to substantially better local minima (thus
skipping the shallow minima other local methods are trapped in).

Finally, we used the modification of the objective function (3) to improve
the frequency of locating the global minimum, as proposed in [10]. We ran DG
from a number of random starting points and calculated the relative frequency
of locating the global minimum. Table 1 compares the success rate of DG with

Parallelization of the Discrete Gradient Method of Non-smooth Optimization 599

Fig. 2. Solution found by the Discrete Gradient vs. that of M.J.D. Powell’s method

Fig. 3. Frequency of locating a local minimum from a randomly chosen initial point

600 G. Beliakov, J.E. Monsalve Tobon, and A.M. Bagirov

Table 1. The frequency of locating the global minimum from a random initial point
by DG and standard Conjugate Gradient method from [10]

N DG Method CG Success
Success Rate Rate

11 0.25926 0.01488
12 0.78947 0.02254
13 0.20000 0.02185
15 0.06667 0.02230
16 0.19444 0.01338
17 0.05419 0.00540
23 0.10170 0.00428
38 0.41667 0.00887

that of the standard Conjugate Gradient method from [10]. Again, clearly DG
is superior, since it is consistently more reliable in locating the global minimum.
It is most noticeable for N = 38 ”difficult” cluster.

6 Conclusion

Non-smooth optimization has many important applications in scientific comput-
ing. Computational chemistry provides a range of such applications related to
molecular structure prediction. The objective function in such problems can have
very complicated structure, or even given as a black-box, and no assumptions
about differentiability can be made. The Discrete Gradient method is based on
generalizations of the notion of gradient equipped with a full-scale calculus.

We have shown that parts of the DG method can be parallelized for its use
on distributed memory computer clusters. Such parallelization only makes sense
for a relatively large number of variables. This is the kind of problems that
frequently come from computational chemistry. We examined one such problem,
the Lennard-Jones clusters problem, and found that DG has an advantage over
other optimization methods. It is the ability of DG to skip many shallow local
minima that makes it suitable for difficult multiextrema problems.

Acknowledgements. This research was supported by the Victorian Partner-
ship for Advanced Computing.

References

[1] M.P. Allen and D.J. Tildesley, Computer Simulations of Liquids, Oxford Science
Publications, Oxford, 1990.

[2] L. Armijo, Minimization of functions having continuous partial derivatives, Pacific
J. of Mathematics, 16 (1966), pp. 1–13.

Parallelization of the Discrete Gradient Method of Non-smooth Optimization 601

[3] A. Bagirov, Derivative-free methods for unconstrained nonsmooth optimization
and its numerical analysis, Journal Investigacao Operacional, 19 (1999), pp. 75–
93.

[4] A. Bagirov, A method for minimization of quasidifferentiable functions, Optimiza-
tion Methods and Software, 17 (2002), pp. 31–60.

[5] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[6] V.F. Demyanov and A.M. Rubinov, Constructive Nonsmooth Analysis, Peter

Lang, Frankfurt am Main, 1995.
[7] C.A. Floudas, Deterministic global optimization: Theory, methods, and applica-

tions, Kluwer Academic Publishers, Dordrecht, London, 2000.
[8] B. Hartke, Global geometry optimization of molecular clusters: TIP4P water,

Zeitschrift fur Physikalische Chemie, 214 (2000), pp. 1251–1264.
[9] J.Y. Lee, J. Pillardy, C. Czaplewski, Y. Arnautova, D.R. Ripoll, A. Liwo, K.D.

Gibson, R.J. Wawak and H.A. Scheraga, Efficient parallel algorithms in global
optimization of potential energy functions for peptides, proteins, and crystals,
Computer Physics Communications, 128 (2000), pp. 399–411.

[10] M. Locatelli and F. Schoen, Fast global optimization of difficult Lennard-Jones
clusters, Computational Optimization and Applications, 21 (2002), pp. 55–70.

[11] A. Neumaier, Molecular modeling of proteins and mathematical prediction of
protein structure, SIAM Review, 39 (1997), pp. 407–460.

[12] R.V. Pappu, R.K. Hart and J.W. Ponder, Analysis and application of potential
energy smoothing and search methods for global optimization, Journal of Physical
Chemistry B, 102 (1998), pp. 9725–9742.

[13] P.M. Pardalos and C.A. Floudas, Optimization in computational chemistry and
molecular biology : local and global approaches, Kluwer Academic Publishers,
Boston, 2000.

[14] M.J.D. Powell, UOBYQA: unconstrained optimization by quadratic approxima-
tion, Mathematical Programming, 92 (2002), pp. 555–582.

[15] H.A. Scheraga, The Multiple Minima Problem in Protein Folding, Polish Journal
of Chemistry, 68 (1994), pp. 889–891.

[16] D.J. Wales and D.J., Global optimization by basin-hopping at the lowest energy
structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem.,
101 (1997), pp. 5111–5116.

[17] D.J. Wales and H.A. Scheraga, Review: Chemistry – Global optimization of clus-
ters, crystals, and biomolecules, Science, 285 (1999), pp. 1368–1372.

[18] B. Wilkinson and C.M. Allen, Parallel programming: techniques and applications
using networked workstations and parallel computers, Prentice Hall, Upper Saddle
River, N.J., 1999.

[19] P.H. Wolfe, Finding the nearest point in a polytope, Math. Progr., 11 (1976), pp.
128–149.

	Introduction
	Discrete Gradient Method
	Parallelization Strategies
	Application: Polyatomic Clusters Problem
	Results
	Conclusion

