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Abstract. The last decade has witnessed an impressive growth of Data
Mining through algorithms and applications. Despite the advances, a
computational theory of Data Mining is still largely outstanding. This
paper discusses some aspects relevant to computation in Data Mining
from the point of view of the Machine Learning theoretician. Computa-
tional techniques used in other fields that deal with learning from data,
such as Statistics and Machine Learning, are potentially very relevant.
However, the specifics of Data Mining are such that most often those
techniques are not directly applicable but require to be re-cast and re-
analysed within Data Mining starting from first principles. We illustrate
this with a PAC-learnability analysis for a Data Mining-like task. We
show that accounting for Data Mining specific requirements, such as
inference of weak predictors and agnosticity assumptions, requires the
generalisation of the classical PAC framework in novel ways.

1 Introduction

Data Mining is a relatively recent research field, formed over the last ten years at
the intersection of Database Theory, Statistics and Machine Learning [12]. It is
perhaps surprising, given the three parent fields, that the theoretical foundations
of Data Mining are still in the incipient development stages. Databases have
been studied since the ’60s, while Statistics is century-old. Machine Learning
has existed as a problem since Turing’s seminal work in the early ’50s. All three
fields have by now acquired solid theoretical foundations and can be regarded as
mature fields. By way of contrast, not enough theoretical understanding exists
about the nature and purposes of Data Mining, and the mere fact that ONE
mythical theory of Data Mining is still being searched for is, perhaps, a sign of the
immaturity of the field. The efforts to develop full-fledged foundations for Data
Mining might have been hampered by the so-called reductionist approaches [14],
i.e. those aiming to reduce Data Mining to one or another of its three parents
mentioned above. The difficulty with these approaches seems to lie with the fact
that, while some aspects of Data Mining fit neatly in either Database Theory,
Statistics or Machine Learning, neither of the parents alone can provide a fully
satisfactory account of all the more important characteristics of Data Mining.
More problematically, even when the general methodology can be traced to one
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of the parent fields, it may be the case that the relevant techniques or tools
are not directly applicable, but require to be re-invented instead, within Data
Mining, starting from first principles.

One such problem is the issue of learnability in Data Mining. An early pre-
occupation of Machine Learning theoreticians has been to assign meaning to the
learning process, i.e. to build computational models of learning. A mathemat-
ical model of learning should be able to tell us something about the learning
target, as well as about the computational resources needed in order to learn
successfully (information, time, space). In contrast, in Data Mining one usually
searches for the unknown and unexpected: “unknown and unexpected patterns of
information” (Parsaye), “previously unknown relationships and patterns within
data” (Ferruzza), “valid, novel, potentially useful, and ultimately understand-
able patterns in data” (Fayyad), “previously unknown, comprehensible, and ac-
tionable information” (Zekulin), “unsuspected relationships in observational data
sets” (Hand-Mannila-Smyth, [6]). A direct application of computational mod-
els developed for Machine Learning is therefore not possible, for at least two
reasons. First, a Data Mining task may consist of finding many weak predic-
tors in a hypothesis space whereas in Machine Learning one strong predictor
is normally sought [4]. This is the so-called local-global problem [13]. Secondly,
Machine Learning algorithms usually make an assumption of representability
of the data-generating mechanism within the hypothesis space of the learner.
This is certainly not the case within Data Mining, wherein the lack of assump-
tions regarding the phenomenon generating the data is a matter of principle as
described above. This is the so-called agnosticity problem [17].

The purpose of this paper is to give a computational treatment of learning
in Data Mining and a PAC-learnability analysis. Such analyses have not so far
been done, to our knowledge. We wish to emphasise that this is not the only
possible computational treatment of learning in Data Mining. Many computa-
tional models of learning exist in the theoretical literature on Machine Learning
(PAC-learning, U-learning, etc.) as well as many forms of learning (inductive,
analytical, Bayesian, reinforcement, etc.). There is no a priori reason to expect
the situation to be any different in Data Mining. Rather we wish to showcase
a type of computational analysis, which takes account of the specifics of Data
Mining as mentioned above. The paper is organised as follows. In Section 2 we
provide some technical preliminaries needed in the rest of the work: a descrip-
tion of Valiant’s PAC-learnability framework in Section 2.1; a brief description of
Mitchell’s agnostic learning in Section 2.2; and a presentation of the local-global
problem in Section 2.3. Section 3 is the main section of the paper, containing the
definitions necessary for our extended PAC framework and the main result. Fi-
nally, Section 4 concludes with a discussion and gives some directions for further
work.
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2.1 PAC-Learnability Framework

We first present the PAC model of learning, generally following Mitchell [17].
In the PAC model of learning (whereof many variants exist), we are cus-

tomarily given an instance space X and two subsets of the powerset of X , the
concept space C and the hypothesis space H: C,H ⊆ 2X ; they can equally well
be thought of as spaces of Boolean-valued functions over X . These two spaces
are usually implicitly defined by some representational schemes, for instance
DNF or CNF formulae, first-order representations etc. However, this will not
be important in our analysis. It is assumed in the classical model that C ⊆ H,
i.e. any possible target is representable in the hypothesis space of the learner.
This entails the possibility of finding a unique strong predictor in the hypothesis
space.

In Data Mining, we no longer make this rather strong assumption. Models
of learning that do not make this assumption have been described before under
the name agnostic [17] or robust learning [8], however those models differ in a
number of ways from the treatment that we propose here.

It is further assumed in the PAC model that a distribution D over X is given,
unknown to the learner but fixed in advance. The purpose will be to probably
approximately learn c ∈ C by querying an oracle that makes random independent
draws from the distribution D. Every time the oracle is queried by the learner, it
draws an instance x ∈ X at random according to D and returns the pair 〈x, c(x)〉
to the learner. An approximation h ∈ H to c ∈ C is evaluated with respect to
the distribution D over X : the error of the approximation is the probability that
an instance from X randomly drawn according to D will be misclassified by h.
It is required that a learner, using reasonable amounts of computational and
informational resources (time, space, queries to the random oracle), output a
hypothesis that with high confidence approximates the target well-enough. The
use of resources such as time and space define the computational complexity
of PAC learning, while the number of queries to the random oracle needed to
probably approximately infer the unknown target defines the sample complexity
or information-theoretic complexity of the PAC learning. It is the latter we will
be concerned with in this paper.

2.2 Agnostic Learning

In agnostic learning [17, 8], no prior assumption is made to the effect that C ⊆ H.
Since the process generating the data is not assumed to be representable in the
hypothesis space of the learner, in agnostic learning one seeks the hypothesis
with the smallest error over the training data, hD

best . It is then shown using
Hoeffding bounds that the true error of this hypothesis will not exceed an ε
overhead compared to the error over the training data. This framework is not
fully satisfactory and cannot be applied directly to the study of Data Mining.
It does not appear clear in agnostic learning why the hypothesis hD

best would be
interesting for us from the point of view of learning the target c. Whilst it is
guaranteed that its true error will be not much bigger than its error over the
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training data, it is not clear why this would be enough justification for singling
out hD

best . Its error over the training data might be smallest of all hypotheses, but
it can still be too big for hD

best to be a reasonable predictor for c. If we however
accept that we are also interested in weak predictors, and not necessarily in
strong predictors, it is not clear why we should pick just one of them. Rather,
from Data Mining we know that we are usually interested in any number of weak
predictors satisfying some quality criteria. This is the object of Section 2.3.

2.3 Local and Global Issues in Data Mining

Data Mining may be concerned [13] with one of two problems. The probabilistic
modelling research tradition views Data Mining as the task of approximating a
global model underlying the data in the form of a joint distribution.

The other approach can be seen as as “the essence of Data Mining — an
attempt to locate nuggets of value amongst the dross” ([5, Hand]). The typical
example is the discovery of frequently occurring patterns, wherein patterns and
their associated frequencies give local properties of the data that can be un-
derstood without having information about the global mass of the data. The
collection of such patterns may be used as a first step towards the global analy-
sis of the data, whereby the collection of patterns collected in the mining phase
undergoes various aggregation operations aimed at building a global descrip-
tion of the data. However, global approaches more genuinely belong to Machine
Learning, where the assumption of a global generative process behind the data
is better supported. Most prominent example of work in the local tradition is
the research on association rule mining [13, 4, 1, 15]. We shall be concerned in
this paper with the local problem. The trouble with building weak predictors
(models) of the data, based on local information, is that of sampling. How can we
make inductive leaps from training data to weak predictors when “selecting only
a sample may discard just those few cases one had hoped to detect” ([5, Hand])?
This problem, to our knowledge, has not been given a theoretical treatment so
far.

3 PAC-Learnability Analysis for Mining

In this section we present our PAC framework for mining analysis, paying at-
tention to the necessity to model both requirements specific to the mining pro-
cess: agnosticity as described in Section 2.2 and locality as described in Sec-
tion 2.3. Given that we no longer can rely on the assumption C ⊆ H which
would allow us to define the version space of the hypotheses consistent with the
data, we have to find another way of defining interesting hypotheses from the
point of view of consistency with the data. We do so by introducing the follow-
ing quasi-order on H, which is relative to the training data D and target c :
h1 'OD(c,D) h2 iff ∀ 〈x, c(x)〉 ∈ D : h2(x) = c(x) ⇒ h1(x) = c(x). The order is
subscripted OD, indicating desirability of hypotheses in H (or Order of Desire).
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It is trivial to verify that the quasi-order axioms (transitivity, reflexivity) are
satisfied. The notion of Version Space VSH,D [17] generalises as follows:

VSH,D
def= {h ∈ H | h|D = c|D}

SVSH,D
def= {h ∈ H |, ∃h′ ∈ H such that h′ &OD(c,D) h}

We call the generalised Version Space, Soft Version Space SVSH,D. The word
soft we use to indicate the graceful degradation of hypotheses with respect to
consistency. With classical Version Spaces, hypotheses are classified in a crisp
manner: hypotheses are either in (consistent) or out (inconsistent) of the Version
Space. Soft Version Spaces SVSH,D retain the hypotheses maximally consistent
with the data D, but the gap between them and the hypotheses left out of the
version space is not as dramatic as in the classical case. Rather, consistency
comes in degrees and there may be all sorts of shades, i.e. hypotheses that are
more or less consistent with the data D according to the order OD(c, D). When
D = X we denote the Soft Version Space by SVSH,c, the set of hypotheses in
H maximally consistent with c over the entire instance space X. Let ∼OD(c,D)

be the equivalence relationship on H canonically induced by the quasi-order
OD(c, D):

h1 ∼OD(c,D) h2 iff h1 'OD(c,D) h2 and h2 'OD(c,D) h1

For the case c ∈ H, the partial order OD(c, D)/∼OD(c,D) on H/∼OD(c,D)

becomes the boolean order B1
def= (0 < 1), with the subclass of consistent hy-

potheses corresponding to 1 and the subclass of inconsistent hypotheses corre-
sponding to 0. Therefore, in this case the Soft Version Space becomes the set
of consistent hypotheses, i.e. it reduces to the classical black-and-white defini-
tion of the Version Space VSH,D. The following theorem establishes the sample
complexity of “soft learning” for maximally consistent learners1.

Theorem 1 (Soft Version Spaces are ε, δ−Exhaustible). Let C,H ⊆ 2X be
a concept space and a hypothesis space respectively, and let VC (H) < ∞ be the
finite Vapnik-Chervonenkis dimension of H. For all 0 < ε, δ < 1, for all D ⊆
(X×{0, 1})m training data such that m ≥ 1

2ε2 (4 log2(2/δ)+8VC (H) log2(13/ε))
and for all h ∈ SVSH,c there is h′ ∈ SVSH,c and h′′ ∈ SVSH,D such that, with
probability at least 1− δ, error(h′, c) ≤ error(h, c) + ε and error(h′′, h′) < ε.

Proof Outline. For reasons of space we only indicate the main steps of the
proof’s theorem. The first step is to show that for all h ∈ SVSH,c there is h′ ∈
SVSH,c such that, with probability at least 1− δ, error(h′, c) ≤ error(h, c) + ε.
This is done by restricting h to D and choosing h′ such that h′ 'OD(c,D) h (one
such maximal element with respect to OD(c, D) is bound to exist). It is also
possible to show that h′ can be so chosen that not only does h′ ∈ SVSH,D but
also h′ ∈ SVSH,c. However such a choice will necessarily be non-constructive. h′

1 Compare with similar results in [17] regarding the complexity of PAC learning for
consistent learners.
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will do at least as well as h on the training data; therefore, by using Hoeffding
bounds, we can bound with high confidence the true error of h′ versus the true
error of h. The second step involves showing that h′ is probably approximable
by an h′′ ∈ SVSH,D with high confidence. This is essentially done by taking h′

as a target, showing that there are elements in SVSH,D that are consistent with
h′ on the training data D, and applying the classical result of PAC-learnability
from [17]. Unlike in the case of h′, such elements can be chosen effectively, in
effect as any h′′ 'OD(c,D) h. Fewer examples would be needed for the second
step, only 1

ε (4 log2(2/δ) + 8VC (H) log2(13/ε)) according to the classical result
for Version Spaces. However, this would only guarantee that elements in SVSH,D

probably approximate elements in SVSH,c, rather than ensuring that all elements
in SVSH,c are probably approximately learned in the reasonable sense described
by the theorem’s statement.

4 Discussion and Further Work

A learnability analysis for Data Mining has been presented within the general
methodology of Valiant’s PAC-learning framework. The analysis shows that this
type of analysis is feasible and that the process of mining is meaningful: the weak
predictors SVSH,D inferred by maximal consistency from a polynomial sample
have predictive power in a well-defined way. Moreover, the collection of all these
predictors approximates the true target SVSH,c, thereby collectively giving some
global information about the data — just as practitioners of Data Mining would
expect [13]. As far as the author is aware, this is the first learnability analysis
for a Data Mining type of task.

There are various ways in which this work can be extended. First, we have
investigated learnability with respect to only one resource, i.e. sample size. A
mining algorithm will need to behave well not only in respect of the informational
resources it requires (sample complexity), but also from the point of view of the
hardware and time requirements (computational complexity). In other words,
we have proved in this paper that any maximally consistent learner is effective,
but there remains to be proved that there are such learners for given hypotheses
spaces that are also efficient. Secondly, other models of learning may also be
considered, as the PAC learning, although most common, is far from being the
only learning model. It is, however, the simplest and best understood and it is
the model of choice for first-time analyses of an inductive learning process [2, 10,
7].

We see the importance of this paper in conveying a principle: computational
analyses of Data Mining problems and algorithms are possible, provided one re-
develops the relevant techniques in the specific context of Data Mining rather
than attempting a blind translation of techniques from other fields that deal
with learning from data. Furthermore, the computational setting in this paper
suggests new algorithms based on maximal consistency computation.

Traditionally, the apriori algorithm and its variants [1, 15] have handled the
boolean inductive query evaluation problem with respect to single monotonic
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constraints (e.g. minimum frequency). More recently, extensions have been pro-
posed [3] that combine apriori with data structures based on version spaces
in order to evaluate boolean inductive queries defined as conjunctions of both
monotonic and anti-monotonic constraints. Those formalisms work well when
the boolean inductive query evaluates to a non-empty set. However, natural
computational settings exist wherein this is not a reasonable expectation for
most of the queries. It is clear, in such settings, that the database still pos-
sesses some structure and some answers are better than others; for instance,
one answer may satisfy more constraints in the inductive query than another.
In cases where the classical formalism returns an empty answer set, we would
instead be interested in computing those answers that most closely satisfy the
inductive query. This problem requires the extension of the classical apriori
formalism at both the conceptual and algorithmic level. In this paper we defined
a framework entitled soft version spaces that can be viewed as describing
the optimal ‘soft match’ SVSH,D between a language of patterns H, herein more
generally regarded as a set of hypotheses, and an inductive query D consisting
of a conjunction of monotonic and anti-monotonic constraints over H, herein
more restrictedly viewed as the conjunction of the h-membership relations for
positive and negative c-examples, respectively. This can be shown to generalise
the classical apriori-based formalism in a natural way. The development of this
idea and of a suitable soft-apriori algorithm for computing SVSH,D are topics
for a future paper.
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