
Self-Adapting Software for Numerical Linear

Algebra Library Routines on Clusters!

Zizhong Chen1, Jack Dongarra1, Piotr Luszczek1, and Kenneth Roche1

Computer Science Department, University of Tennessee Knoxville, 1122 Volunteer
Blvd., Suite 203, Knoxville, TN 37996-3450, U.S.A. dongarra@cs.utk.edu

Abstract. This article describes the context, design, and recent devel-
opment of the LAPACK for Clusters (LFC) project. It has been de-
veloped in the framework of Self-Adapting Numerical Software (SANS)
since we believe such an approach can deliver the convenience and ease
of use of existing sequential environments bundled with the power and
versatility of highly-tuned parallel codes that execute on clusters. Ac-
complishing this task is far from trivial as we argue in the paper by
presenting pertinent case studies and possible usage scenarios.

1 Introduction

Driven by the desire of scientists for ever higher levels of detail and accuracy in
their simulations, the size and complexity of required computations is growing at
least as fast as the improvements in processor technology. Scientific applications
need to be tuned to extract near peak performance even as hardware platforms
change underneath them. Unfortunately, tuning even the simplest real-world op-
erations for high performance usually requires an intense and sustained effort,
stretching over a period of weeks or months, from the most technically advanced
programmers, who are inevitably in very scarce supply. While access to nec-
essary computing and information technology has improved dramatically over
the past decade, the efficient application of scientific computing techniques still
requires levels of specialized knowledge in numerical analysis, mathematical soft-
ware, computer architectures, and programming languages that many working
researchers do not have the time, the energy, or the inclination to acquire. With
good reason scientists expect their computing tools to serve them and not the
other way around. And unfortunately, the growing desire to tackle highly inter-
disciplinary problems using more and more realistic simulations on increasingly
complex computing platforms will only exacerbate the problem. The challenge
for the development of next generation software is the successful management
of the complex computing environment while delivering to the scientist the full
power of flexible compositions of the available algorithmic alternatives and can-
didate hardware resources.
! This work is partially supported by the DOE LACSI - Subcontract #R71700J-

29200099 from Rice University and by the NSF NPACI – P.O. 10181408-002 from
University of California Board of Regents via Prime Contract #ASC-96-19020.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 665−672, 2003.
 Springer-Verlag Berlin Heidelberg 2003



With this paper we develop the concept of Self-Adapting Numerical Software
(SANS) for numerical libraries that execute in the cluster computing setting.
The central focus is the LAPACK For Clusters (LFC) software which supports a
serial, single processor user interface, but delivers the computing power achiev-
able by an expert user working on the same problem who optimally utilizes the
resources of a cluster. The basic premise is to design numerical library soft-
ware that addresses both computational time and space complexity issues on
the user’s behalf and in a manner as transparent to the user as possible. The
software intends to allow users to either link against an archived library of exe-
cutable routines or benefit from the convenience of prebuilt executable programs
without the hassle of properly having to resolve linker dependencies. The user is
assumed to call one of the LFC routines from a serial environment while working
on a single processor of the cluster. The software executes the application. If it
is possible to finish executing the problem faster by mapping the problem into
a parallel environment, then this is the thread of execution taken. Otherwise,
the application is executed locally with the best choice of a serial algorithm.
The details for parallelizing the user’s problem such as resource discovery, se-
lection, and allocation, mapping the data onto (and off of) the working cluster
of processors, executing the user’s application in parallel, freeing the allocated
resources, and returning control to the user’s process in the serial environment
from which the procedure began are all handled by the software. Whether the
application was executed in a parallel or serial environment is presumed not to
be of interest to the user but may be explicitely queried. All the user knows is
that the application executed successfully and, hopefully, in a timely manner.

2 Related Efforts

Since the concept of self-adaptation appeared in the literature [27] it has been
successfully applied in a wide range of projects. The ATLAS [31] project started
as a “DGEMM() optimizer” [13] but continues to successfully evolve by includ-
ing tuning for all levels of Basic Linear Algebra Subprograms (BLAS) [7, 8, 10,
9] and LAPACK [2] as well by making decisions at compilation and execution
time. Functionality similar to ATLAS, but much more limited, was included in
the PHiPAC [6] project. Iterative methods and sparse linear algebra operations
are the main focus of numerous efforts. Some of them [30, 3] target convergence
properties of iterative solvers in a parallel setting while others [1, 21, 20, 28, 26]
optimize the most common numerical kernels or provide intelligent algorithmic
choices for the entire problem solving process [5, 24]. In the area of parallel com-
puting, researchers are offering automatic tuning of generic collective communi-
cation routines [29] or specific collectives as in the HPL project [12]. Automatic
optimization of the Fast Fourier Transform (FFT) kernel has also been under in-
vestigation by many scientists [19, 18, 23]. In grid computing environments [17],
holistic approaches to software libraries and problem solving environments such
as defined in the GrADS project [4] are actively being tested. Proof of concept

666 Z. Chen et al.



efforts on the grid employing SANS components exist [25] and have helped in
forming the approach followed in LFC.

3 LAPACK for Clusters Overview

The LFC software addresses the motivating factors from the previous section in
a self-adapting fashion. LFC assumes that only a C compiler, an MPI [14–16]
implementation , and some variant of the BLAS routines, be it ATLAS or a ven-
dor supplied implementation, is installed on the target system. Target systems
are intended to be “Beowulf like”. There are essentially three components to
the software: data collection routines, data movement routines, and application
routines.

4 Typical Usage Scenario

The steps involved in a typical LFC run start with a user’s problem that may be
stated in terms of linear algebra. The problem statement is addressable with one
of the LAPACK routines supported in LFC. For instance, suppose that the user
has a system of n linear equations with n unknowns, Ax = b. There is a parallel
computing environment that has LFC installed. The user is, for now, assumed
to have access to at least a single node of said parallel computing environment.
This is not a necessary constraint - rather a simplifying one. The user compiles
the application code (that calls LFC routines) linking with the LFC library
and executes the application from a sequential environment. The LFC routine
executes the application returning an error code denoting success or failure. The
user interprets this information and proceeds accordingly.

On the LFC software side, a decision is made upon how to solve the user’s
problem by coupling the cluster state information with a knowledge of the par-
ticular application. Specifically, a decision is based upon the scheduler’s ability
to successfully predict that a particular subset of the available processors on the
cluster will enable a reduction of the total time to solution when compared to
serial expectations for the specific application and user parameters. The relevant
times are the time that is spent handling the user’s data before and after the
parallel application plus the amount of time required to execute the parallel ap-
plication. If the decision is to solve the user’s problem locally (sequentially) then
the relevant LAPACK routine is executed. On the contrary, if the decision is to
solve the user’s problem in parallel then a process is forked that will be respon-
sible for spawning the parallel job and the parent process waits for its return
in the sequential environment. The selected processors are allocated (in MPI),
the user’s data is mapped (block cyclically decomposed) onto the processors
(the data may be in memory or on disk), the parallel application is executed
(e.g. ScaLAPACK), the data is reverse mapped, the parallel process group is
freed, and the solution and control are returned to the user’s process.

667Self-Adapting Software for Numerical Linear Algebra Library Routines on Clusters



5 Performance Results

1

10

100

1000

0 2000 4000 6000 8000 10000 12000 14000

T
im

e(
s)

Matrix Order

Oracle versus LFC timing results for Ax=b

LFC
ORACLE

Fig. 1. Parellel execution times of the linear solver run by the oracle and LFC on a
cluster.

Figure 1 demonstrates the strength of the self-adapting approach of the LFC
software. The problem sizes tested were 512, 1024, 2048, 4096, 8192, 12288,
14000. LFC chose 2, 3, 6, 8, 12, 16, 16 processes for these problems respectively.
The oracle, which in theory knows the best parameters, utilized 4, 4, 8, 10, 14,
16, 16 processes respectively. The runs were conducted on a cluster of eight Intel
Pentium III, 933 MHz dual processors, connected with a 100 Mb/s switch. In
each run the data was assumed to start on disk and was written back to disk after
the factorization. In the parallel environment, both the oracle and LFC utilized
the I/O routines from ROMIO to load/store the data and the ScaLAPACK
routine PDGESV() for the application code.

Figure 2 illustrates the fact that the situation is more complicated than just
selecting the right grid aspect ratio (e.g. the number of process rows divided
by the number of process columns). Sometimes it might be beneficial to use a
smaller number of processors. This is especially true if the number of proces-
sors is a prime number which leads to a flat process grid and thus very poor
performance on many systems. It is unrealistic to expect that non-expert users
will correctly make the right decisions here. It is either a matter of having ex-
pertise or experimental data to guide the choice and our experiences suggest
that perhaps a combination of both is required to make good decisions consis-
tently. Another point stressed by the figure is the widening gap (excluding merge
points at prime processor numbers) between the worst and the optimal resource

668 Z. Chen et al.



30 35 40 45 50 55 60 65
5000

6000

7000

8000

9000

10000

11000 LFC performance on a cluster of AMD processors

Worst processor grid

Best processor grid

W
al

lc
lo

ck
tim

e
[s

]

Number of processors

Fig. 2. Timing results for solving a linear system of order 70000 with the best and
worst possible rectangular processor grid topologies reported.

choices for increasing number of processors. This shows the increasing chance for
a user to use the hardware and software in a suboptimal way as more powerful
computers become available.

As a side note, with respect to experimental data, it is worth mentioning
that the collection of data for Figure 2 required a number of floating point
operations that would compute the LU factorization of a square dense matrix of
order almost three hundred thousand. Matrices of that size are usually suitable
for supercomputers (the slowest supercomputer on the Top500 [22] list that
factored such a matrix was on position 16 in November 2002) – an unlikely
target machine for majority of users.

6 Conclusions and Future Work

As computing systems become more powerful and complex it becomes a major
challenge to tune applications for high performance. We have described a con-
cept and outlined a plan to develop numerical library software for systems of
linear equations which adapts to the user’s problem and the computational en-
vironment in an attempt to extract near optimum performance. This approach
has applications beyond solving systems of linear equations and can be applied
to most other areas where users turn to a library of numerical software for their
solution.

At runtime our software makes choices at the software and hardware levels
for obtaining a best parameter set for the selected algorithm by applying exper-
tise from the literature and empirical investigations of the core kernels on the

669Self-Adapting Software for Numerical Linear Algebra Library Routines on Clusters



target system. The algorithm selection depends on the size of the input data and
empirical results from previous runs for the particular operation on the cluster.
The overheads associated with this dynamic adaptation of the user’s problem to
the hardware and software systems available can be minimal.

The results presented here show unambiguously that the concepts of self
adaptation can come very close to matching the performance of the best choice
in parameters for an application written for a cluster. As Figure 1 highlights,
the overhead to achieve this is minimal and the performance levels are almost
indistinguishable. As a result, the burden on the user is removed and hidden in
the software.

This paper has given a high level overview of the concepts and techniques used
in self adapting numerical software. There are a number of issues that remain to
be investigated in the context of this approach [11]. Issues such as adapting to a
changing environment during execution, reproducibility of results when solving
the same problem on differing numbers of processors, fault tolerance, reschedul-
ing in the presence of additional load, dynamically migrating the computation,
etc all present additional challenges which are ripe for further investigation. In
addition, with Grid computing becoming mainstream, these concepts will find
added importance [4].

Acknowledgements.
We wish to thank the Ohio Supercomputing Center (OSC), the Computational
Science and Mathematics Division at Oak Ridge National Laboratory (XTORC
cluster), the Center for Computational Sciences at Oak Ridge National Labo-
ratory (Cheetah, Eagle), the Dolphin donation cluster (part of the SinRG pro-
gram at the University of Tennessee Knoxville), the San Diego Supercomputing
Center (SDSC), and the National Energy Research Scientific Computing Cen-
ter (NERSC) for research conducted on their resources. We also wish to thank
NPACI, the National Partnership for the Advancement of Computational In-
frastrucure, for including LFC in its NPACkage.

References

1. R. Agarwal, Fred Gustavson, and M. Zubair. A high-performacne algorithm us-
ing preprocessing for the sparse matrix-vector multiplication. In Proceedings of
International Conference on Supercomputing, 1992.

2. E. Anderson, Z. Bai, C. Bischof, Suzan L. Blackford, James W. Demmel, Jack J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
Danny C. Sorensen. LAPACK User’s Guide. Society for Industrial and Applied
Mathematics, Philadelphia, Third edition, 1999.

3. Richard Barrett, Michael Berry, Jack Dongarra, Victor Eijkhout, and Charles
Romine. Algorithmic bombardment for the iterative solution of linear systems:
A poly-iterative approach. Journal of Computational and Applied Mathematics,
74(1-2):91–109, 1996.

670 Z. Chen et al.



4. F. Berman. The GrADS project: Software support for high level grid application
development. International Journal of High Performance Computing Applications,
15:327–344, 2001.

5. A. Bik and H. Wijshoff. Advanced compiler optimizations for sparse computations.
Journal of Parallel and Distributing Computing, 31:14–24, 1995.

6. J. Bilmes et al. Optimizing matrix multiply using PHiPAC: a portable, high-
performance, ANSI C coding methodology. In Proceedings of International Con-
ference on Supercomputing, Vienna, Austria, 1997. ACM SIGARC.

7. Jack J. Dongarra, J. Du Croz, Iain S. Duff, and S. Hammarling. Algorithm 679:
A set of Level 3 Basic Linear Algebra Subprograms. ACM Transactions on Math-
ematical Software, 16:1–17, March 1990.

8. Jack J. Dongarra, J. Du Croz, Iain S. Duff, and S. Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software,
16:18–28, March 1990.

9. Jack J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. Algorithm 656: An
extended set of FORTRAN Basic Linear Algebra Subprograms. ACM Transactions
on Mathematical Software, 14:18–32, March 1988.

10. Jack J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set
of FORTRAN Basic Linear Algebra Subprograms. ACM Transactions on Mathe-
matical Software, 14:1–17, March 1988.

11. Jack J. Dongarra and Victor Eijkhout. Self-adapting numerical software for next
generation applications. Technical report, Innovative Computing Laboratory, Uni-
versity of Tennessee, August 2002. http://icl.cs.utk.edu/iclprojects/pages/
sans.html.

12. Jack J. Dongarra, Piotr Luszczek, and Antione Petitet. The LINPACK benchmark:
Past, present, and future. Concurrency and Computation: Practice and Experience,
15:1–18, 2003.

13. Jack J. Dongarra and Clint R. Whaley. Automatically tuned linear algebra software
(ATLAS). In Proceedings of SC’98 Conference. IEEE, 1998.

14. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
The International Journal of Supercomputer Applications and High Performance
Computing, 8, 1994.

15. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
(version 1.1), 1995. Available at: http://www.mpi-forum.org/.

16. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, 18 July 1997. Available at http://www.mpi-forum.org/docs/mpi-20.ps.

17. Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco, 1999.

18. M. Frigo. A fast Fourier transform compiler. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation, Atlanta, Geor-
gia, USA, 1999.

19. M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the
FFT. In Proceedings International Conference on Acoustics, Speech, and Signal
Processing, Seattle, Washington, USA, 1998.

20. E.-J. Im. Automatic optimization of sparse matrix-vector multiplication. PhD
thesis, University of California, Berkeley, California, 2000.

21. E.-J. Im and Kathy Yelick. Optimizing sparse matrix-vector multiplication on
SMPs. In Ninth SIAM Conference on Parallel Processing for Scientific Computing,
San Antonio, Texas, 1999.

671Self-Adapting Software for Numerical Linear Algebra Library Routines on Clusters



22. Hans W. Meuer, Erik Strohmaier, Jack J. Dongarra, and Horst D. Simon. Top500
Supercomputer Sites, 20th edition edition, November 2002. (The report can be
downloaded from http://www.netlib.org/benchmark/top500.html).

23. D. Mirkovic and S. L. Johnsson. Automatic performance tuning in the UHFFT li-
brary. In 2001 International Conference on Computational Science, San Francisco,
California, USA, 2001.

24. Jakob Ostergaard. OptimQR – A software package to create near-optimal solvers
for sparse systems of linear equations. http://ostenfeld.dk/~jakob/OptimQR/.

25. Antoine Petitet et al. Numerical libraries and the grid. International Journal of
High Performance Computing Applications, 15:359–374, 2001.

26. Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector
multiplication. In Proceddings of SC’99, 1999.

27. J. R. Rice. On the construction of poly-algorithms for automatic numerical anal-
ysis. In M. Klerer and J. Reinfelds, editors, Interactive Systems for Experimental
Applied Mathematics, pages 31–313. Academic Press, 1968.

28. Sivan Toledo. Improving the memory-system performance of sparse matrix-vector
multiplication. IBM Journal of Research and Development, 41(6), November 1997.

29. Sathish Vadhiyar, Graham Fagg, and Jack J. Dongarra. Performance modeling for
self adapting collective communications for MPI. In Los Alamos Computer Science
Institute Symposium (LACSI 2001), Sante Fe, New Mexico, 2001.

30. R. Weiss, H. Haefner, and W. Schoenauer. LINSOL (LINear SOLver) – Description
and User’s Guide for the Parallelized Version. University of Karlsruhe Computing
Center, 1995.

31. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing, 27(1-2):3–
35, 2001.

672 Z. Chen et al.


	1 Introduction
	2 Related E6orts
	3 LAPACK for Clusters Overview
	4 Typical Usage Scenario
	5 Performance Results
	6 Conclusions and Future Work

