
An Augmented Lanczos Algorithm for the
Efficient Computation of a Dot-Product of a

Function of a Large Sparse Symmetric Matrix

Roger B. Sidje1, Kevin Burrage1, and B. Philippe2

1 Department of Mathematics
University of Queensland

Brisbane QLD 4072, Australia
{rbs,kb}@maths.uq.edu.au

2 INRIA/IRISA
Campus de Beaulieu

35042 Rennes Cedex, France
philippe@irisa.fr

Abstract. The Lanczos algorithm is appreciated in many situations due
to its speed and economy of storage. However, the advantage that the
Lanczos basis vectors need not be kept is lost when the algorithm is used
to compute the action of a matrix function on a vector. Either the basis
vectors need to be kept, or the Lanczos process needs to be applied twice.
In this study we describe an augmented Lanczos algorithm to compute
a dot product relative to a function of a large sparse symmetric matrix,
without keeping the basis vectors.

1 Introduction

To compute the action of a matrix-function on a vector, f(A)v, where A is a
large sparse symmetric matrix of order n, and f is a function for which A is
admissible (i.e., f(A) is defined), the general principle of the Lanczos method
relies on projecting the operator A onto the Krylov subspace Km(A, v) =
Span{v, Av, . . . , Am−1v} and approximating the action of the function in the
subspace. Here, m is the prescribed dimension of the Krylov subspace and in
practice m � n. The classical Lanczos Algorithm 1 will start with the vector v
and perform a three-term recurrence scheme to construct a symmetric tridiago-
nal matrix Tm and an orthonormal basis Vm of Km(A, v):

Tm =




α1 β2

β2 α2
. . .

. βm

βm αm




, Vm = [v1, v2, . . . , vm]

and for any j = 1, . . . , m we have the fundamental relations

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 693–704, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

694 R.B. Sidje, K. Burrage, and B. Philippe

V T
j Vj = I
AVj = VjTj + βj+1vj+1e

T
j

V T
j AVj = Tj

(1)

where Vj = [v1, . . . , vj], Tj is the jth leading submatrix of Tm, ej is the jth col-
umn of the identity matrix of appropriate size. The pseudo-code for the Lanczos
process is indicated below.

Algorithm 1: Lanczos(m, A, v)
β = ‖v‖2 ; v1 := v/β ; β1 := 0 ;
for j := 1 : m do

p := Avj − βjvj−1 ;
αj := vT

j p ; p := p − αjvj ;
βj+1 := ‖p‖2 ; vj+1 := p/βj+1 ;

endfor

From this, v = βVme1 where β = ‖v‖2. To compute w = f(A)v, the underlying
principle is to use the approximation w ≈ w̃ where

w̃ = βVmf(Tm)e1. (2)

Thus, the distinctive feature is that the original large problem is converted to
the smaller problem (2) which is more desirable. Moreover the special structure
of Tm (symmetric tridiagonal) means that, when possible, the smaller matrix-
function action f(Tm)e1 can be handled in an efficient, tailor-made manner.
Theory and practice over the years have confirmed that this simplified process
is amazingly effective for a wide class of problems. In general however, the basis
Vm = [v1, . . . , vm] has to be kept for the final evaluation of w̃ = βVmf(Tm)e1.
The basis Vm is a dense matrix of size n × m, and when n is very large, such
a storage is seen as a drawback in certain configurations. In specific contexts
such as linear systems (conjugate gradient-type methods) or eigenvalue prob-
lems (where eigenvectors are not needed), it is possible to avoid storing the basis
vectors and this is considered as a significant strength of the Lanczos scheme. In
principle however, it is also possible to avoid this storage by applying the Lanc-
zos process twice. But the perception that Lanczos storage savings are lost when
evaluating f(A)v has prompted some authors to offer alternative methods out-
side the Krylov-based paradigm. For instance, Bergamaschi and Vianello [2] used
Chebyshev series expansions to compute the action of the exponential operator
in the case of large sparse symmetric matrices arising after space discretization
of 2D and 3D parabolic PDEs by finite differences and finite elements. The con-
figuration used for their experiments was a 600Mhz Alpha station with 128MB
of RAM. Although the Chebyshev series method requires an a priori estimation
of the leftmost and rightmost eigenvalues of A, and is known to converge slower
than the Krylov approach, they showed that when memory is at premium, some
advantages of the Krylov method may need to be traded.

In this study, we present an augmented Lanczos algorithm which alleviates
the drawback, allowing the Krylov framework to be fully retained when the issue

An Augmented Lanczos Algorithm 695

at hand is really to compute uT f(A)v for given vectors u and v, i.e., when we
are interested in a weighted sum of the action of matrix-function on a vector. As
a particular example, taking u = ei and v = ej allows retrieving the ij-th entry
of f(A). Assuming the matrix is positive definite, this was used to bound entries
of a matrix function [1,5,6]. In this study however, we do not assume that the
matrix is positive definite. Another example worth mentioning is the evaluation
of the norm ‖f(A)v‖2 which can be handled as a special case. Thus, compared
to a method such as the Chebyshev method, the benefits are two-fold:

– Economy of storage: the Lanczos basis vectors need not be saved. This alle-
viates the primary drawback that motivated the Chebyshev method, and

– Potential re-usability: the computed data can be re-used to get {uT
p f(A)v}

for a family of vectors {up}. Note that because the matrix is symmetric, com-
puting {uT

p f(A)v} is algorithmically equivalent to computing {uT f(A)vq}
(but not equivalent to computing {uT

p f(A)vq} which would need several
sweeps). The computed data can also be re-used to get uT fp(A)v for a fam-
ily of functions {fp}. This can be useful when the argument matrix depends
on another variable, e.g., the matrix may belong to the parameterized family
A(t) = tA where t is the ‘time’ variable. As a concrete example, evaluating∫ T

0 uT f(tA)v may involve discretizing the integration domain and comput-
ing the matrix function at several knots. Sometimes also, the matrix may
vary in terms of rank-updates – such problems can be seen in Bernstein and
Van Loan [3] though in the unsymmetric context. A careful implementation
of our scheme can offer a suitable re-usable framework where appropriate.

2 The Augmented Lanczos Algorithm

The principle of augmenting a Krylov subspace is well-known in the literature
and has been used in several other contexts. Differences between approaches usu-
ally lie in the strategy by which the augmentation is made. Probably, the most
popular Krylov algorithm obtained via augmentation is the GMRES algorithm
of Saad and Schultz [11] which resulted from taking full advantage of the infor-
mation computed by the Arnoldi procedure (or FOM – Full Orthogonalization
Method). Our proposed augmented scheme falls in a class of similar approaches.
To get uT f(A)v, the idea is to augment the Lanczos basis Vm as follows. Define
the orthogonal projector onto Vm as Pm = VmV T

m , and let

V̂m+1 = [Vm | v̂m+1]

where

v̂m+1 =
(I − Pm)u

‖(I − Pm)u‖2
,

and take an approximation in this augmented subspace as uT w ≈ uT ŵ where

ŵ = βV̂m+1f(V̂ T
m+1AV̂m+1)e1.

696 R.B. Sidje, K. Burrage, and B. Philippe

Now, we have the symmetric matrix

V̂ T
m+1AV̂m+1 =

[
V T

m

v̂T
m+1

]
A[Vm | v̂m+1] =

[
Tm V T

m Av̂m+1
v̂T

m+1AVm v̂T
m+1Av̂m+1

]

and expanding further, we get

v̂T
m+1AVm = v̂T

m+1(VmTm + βm+1vm+1e
T
m) = βm+1v̂

T
m+1vm+1e

T
m

and letting
β̂m+1 ≡ βm+1v̂

T
m+1vm+1 (3)

and
α̂m+1 ≡ v̂T

m+1Av̂m+1 (4)
we see that

V̂ T
m+1AV̂m+1 ≡ T̂m+1 =




Tm

0
...
0

β̂m+1

0 · · · 0 β̂m+1 α̂m+1




.

Hence T̂m+1 remains tridiagonal. Furthermore, just as with the standard Lanczos
process, the work at one step is a dovetail update from the work at the previous
step, without the need to store the entire set of basis vectors. Indeed V T

m u =
[vT

1 u, . . . , vT
mu]T = [(V T

m−1u)T , vT
mu]T and (I − Pm)u = (I − VmV T

m)u = (I −
vmvT

m) · · · (I − v1v
T
1)u can be computed incrementally as basis vectors become

available. We now give additional details on how α̂m+1 can be efficiently updated
instead of using just (4). Direct calculation shows that

α̂m+1 ≡ v̂T
m+1Av̂m+1 =

uT (I − Pm)A(I − Pm)u
‖(I − Pm)u‖2

2

=
uT Au − uT VmTmV T

m u − 2βm+1(vT
m+1u)(vT

mu)
‖(I − Pm)u‖2

2
·

It is therefore clear that we also have

α̂m =
uT Au − uT Vm−1Tm−1V

T
m−1u − 2βm(vT

mu)(vT
m−1u)

‖(I − Pm−1)u‖2
2

·

But further calculation shows that

uT VmTmV T
m u = uT Vm−1Tm−1V

T
m−1u + 2βm(vT

m+1u)(vT
mu) + αm(vT

mu)2,

and hence we end up with the updating formula

α̂m+1‖(I − Pm)u‖2
2 = α̂m‖(I − Pm−1)u‖2

2 − 2βm+1(vT
m+1u)(vT

mu) − αm(vT
mu)2

in which we also have

‖(I − Pm)u‖2
2 = ‖(I − Pm−1)u‖2

2 + (vT
mu)2.

Therefore, the vector u interacts with A only through one extra matrix-vector
product needed to form the initial α̂2. And from there subsequent updates are
made by scalar recurrences using quantities readily available.

An Augmented Lanczos Algorithm 697

Remarks

Rather than adding the augmented vector u at the end, we could have put it
at the beginning. And then, we could either 1) orthogonalize u against each
incoming vector as before, or 2) orthogonalize each incoming vector against u.

1. In the first case, we would get Ṽm+1 = [v̂m+1 | Vm], with Vm unchanged
and v̂m+1 resulting from orthogonalizing u against each incoming vector as
before. This is therefore equivalent to a permutation Ṽm+1 = V̂m+1P̃m+1

where P̃m+1 = [em+1, e1, . . . , em] is the (m + 1)-by-(m + 1) permutation
matrix that produces the effect. It follows that

Ṽ T
m+1AṼm+1 = P̃T

m+1V̂
T
m+1AV̂m+1P̃m+1 = P̃T

m+1T̂m+1P̃m+1

and this shows that the tridiagonal form is destroyed. If we leave out v̂m+1
we recover the classical Lanczos quantities, whereas our primary interest in
this study is to explore an augmented approach and summarize our findings.

2. If u is added at the beginning and each incoming vector is orthogonalized
against it, the resulting matrix from iterating on {u, v, Av, . . .} is not tridiag-
onal (although the restriction onwards from v is). Augmenting at the begin-
ning is also what is often termed as locking or deflation when used as a means
to accelerate the convergence of eigenvalue problems or linear systems.

It is worth noting that when dealing with the same augmented subspace
Km(A, v) + {u}, there exists transformation matrices between the computed
bases. Our proposed approximation scheme offers the advantage of retaining the
standard Lanczos elements. Existing Lanczos implementations would therefore
provide a good starting code base and as we shall see, the scheme is also well
suited for establishing further results. It should also be clear such an augmented
scheme can be applied to the Arnoldi procedure. But, by itself, the Arnoldi
procedure already needs all basis vectors to perform the Gram-Schmidt sweeps.

3 Alternative Approaches

To compute uT f(A)v, our motivation was to avoid keeping the entire set of
Lanczos basis vectors. Nor did we want to apply the process twice and incur
the associated cost. Aside from leaving out u and embedding uT Vm in the clas-
sical Lanczos scheme as noted earlier, these goals could be achieved by other
approaches such as the block Lanczos algorithm and the bi-orthogonal Lanczos
algorithm in the ways outlined below.

If started with [v, u], the block Lanczos computes a block tridiagonal matrix
and an orthonormal basis V2m of Km(A, v) + Km(A, u). Since u and v can be
expressed in the computed basis as u = V2mV T

2mu and v = V2mV T
2mv, an ap-

proximation to uT f(A)v could be retrieved without storing all of V2m. However,
doing a block Lanczos in this context is twice the cost of the augmented scheme,
although the approach satisfies a particular theoretical characterization as we
shall see below.

698 R.B. Sidje, K. Burrage, and B. Philippe

Another approach is the bi-orthogonal Lanczos algorithm which is usually
meant for unsymmetric problems. But it is possible to deliberately apply it
here to simultaneously compute a basis of Km(A, v) and a basis of Km(A, u)
from where to approximate uT f(A)v. Below we briefly summarize this well-
known algorithm using its general, unsymmetric notation. We do not dwell here
on the obvious notational simplifications that can be made since the matrix is
symmetric.

Algorithm 2: Bi-orthogonal Lanczos
β := ‖v‖2 ; α := (uT v)/β ;
v1 := v/β ; u1 := u/α ;
for j := 1 : m do

p := Avj ; q := AT uj ;
if j > 1 then

p := p − γjvj−1 ; q := q − βjuj−1 ;
endif
αj := uT

j p ;
p := p − αjvj ; q := q − αjuj ; s := qT p ;
βj+1 :=

√|s| ;
γj+1 := sign(s) βj+1 ;
vj+1 := p/βj+1 ; uj+1 := q/γj+1 ;

endfor

Upon completion of this algorithm, we get a tridiagonal matrix

Tm =




α1 γ2

β2 α2
. . .

. γm

βm αm




,

and Vm ≡ [v1, . . . , vm] is a basis of Km(A, v), Um ≡ [u1, . . . , um] is a basis of
Km(AT , u). The bases are bi-orthogonal, i.e.,

UT
mVm = V T

m Um = I (5)

and furthermore we have the relations

AVm = VmTm + βm+1vm+1e
T
m (6)

UT
mAVm = Tm (7)
AT Um = UmTT

m + γm+1um+1e
T
m. (8)

From these, we see that v = βVme1 and u = αUme1 and the approxima-
tion is computed as uT f(A)v = αβeT

1 UT
mf(A)Vme1 ≈ αβeT

1 f(UT
mAVm)e1 =

αβeT
1 f(Tm)e1. And this relationship allows us to avoid storing the bases explic-

itly. In our symmetric context, we replace AT with A. Each step requires two
matrix-vector products, so it is twice as expensive as of the augmented scheme,
but as we shall see below the bi-orthogonal Lanczos algorithm turns out to have
certain theoretical characteristics similar to that of the block Lanczos.

An Augmented Lanczos Algorithm 699

4 Some Properties

The notation used here is that introduced earlier for each relevant method.
We first start with the proposed augmented process. In analogy with (1) the
augmented process satisfies the following relations

V̂ T
m+1V̂m+1 = I

V̂ T
m+1AV̂m+1 = T̂m+1

AV̂m+1 = V̂m+1T̂m+1 + (βm+1vm+1 − β̂m+1v̂m+1)eT
m − β̂m+1vmeT

m+1 +

+ (A − α̂m+1I)v̂m+1e
T
m+1

= V̂m+1T̂m+1 + (I − v̂m+1v̂
T
m+1)

(
βm+1vm+1e

T
m +

+ (I − vmvT
m)Av̂m+1e

T
m+1

)

where em and em+1 are of length m+1. We have already seen that the first and
second relations hold by construction. To get the third relation, we write

AV̂m+1 = A[Vm | v̂m+1] = [VmTm + βm+1vm+1e
T
m | Av̂m+1]

and

V̂m+1T̂m+1 = [Vm | v̂m+1]
[

Tm β̂m+1em

β̂m+1e
T
m α̂m+1

]

= [VmTm + β̂m+1v̂m+1e
T
m | β̂m+1vm + α̂m+1v̂m+1]

and the relation comes after some algebraic manipulation. The last follows from
the fact that α̂m+1 = v̂T

m+1Av̂m+1 and βm+1v̂
T
m+1vm+1 = β̂m+1 = vT

mAv̂m+1.
The basis Vm and the tridiagonal matrix Tm computed by the original Lanc-

zos process are known to satisfy p(A)v1 = Vmp(Tm)e1 for any polynomial p
of degree ≤ m − 1 (see, e.g., [9, Lemma 3.1]). This is still valid with the aug-
mented process since it fully retains the original Lanczos elements. Thus we have
p(A)v1 = V̂m+1p(T̂m+1)e1 for any polynomial p of degree ≤ m − 1. In fact, we
now show that we can extend this property to a higher degree in our context.

Proposition 1. At the m-th step of the augmented Lanczos process, we have
uT p(A)v1 = uT V̂m+1p(T̂m+1)e1 for any polynomial p of degree ≤ m.

Proof. Since the result is already true for a degree ≤ m−1, it remains to establish
the degree m. Let pm(z) = a0 + zqm−1(z) be a polynomial of degree m in which
qm−1 is a polynomial of degree m − 1 and a0 = pm(0) is a scalar. We have

pm(A)v1 = a0v1 + Aqm−1(A)v1 = a0v1 + AV̂m+1qm−1(T̂m+1)e1

= a0v1 +
(
V̂m+1T̂m+1 + (I − v̂m+1v̂

T
m+1)

(
βm+1vm+1e

T
m +

+ (I − vmvT
m)Av̂m+1e

T
m+1

))
qm−1(T̂m+1)e1

= V̂m+1pm(T̂m+1)e1 + (I − v̂m+1v̂
T
m+1)

(
βm+1vm+1e

T
m +

+ (I − vmvT
m)Av̂m+1e

T
m+1

)
qm−1(T̂m+1)e1

700 R.B. Sidje, K. Burrage, and B. Philippe

Since T̂m+1 is a tridiagonal matrix of order m + 1 and qm−1 is a polyno-
mial of degree m − 1, we have eT

m+1qm−1(T̂m+1)e1 = 0. Furthermore uT (I −
v̂m+1v̂

T
m+1)vm+1 = 0.

Proposition 1 means that the approximation is exact if the minimal degree
of v with respect to the matrix A is ≤ m. In general, the a priori error bounds
obtained using functional calculus (as in [7]) for the usual Lanczos scheme for
approximating f(A)v can be transposed here. In particular, it is known from the
theory of matrix functions [8, Chap.6] that

f(A)v = pn−1(A)v (9)

where pn−1 is the Hermite interpolation polynomial of f at λ(A), the spectrum
of A. Hence,

uT ŵ = βuT V̂m+1f(T̂m+1)e1 = βuT V̂m+1pm(T̂m+1)e1 = uT pm(A)v

with pm being the Hermite interpolation polynomial (of degree m) at the mod-
ified ‘Ritz’ values 1. The error can be written in a polynomial form as

|uT f(A)v − βuT V̂m+1f(T̂m+1)e1| = |uT pn−1(A)v − uT pm(T̂m+1)v|
The theory of Krylov subspaces [10] shows that λ(T̂m+1) not only approximates
a larger subset of λ(A) as m increases but also approximates it more accurately.
The next results shed some light on the behavior of the bi-orthogonal Lanczos
process and the block Lanczos process.

Proposition 2. Let Tm be the resulting tridiagonal matrix at the m-th step
of the bi-orthogonal Lanczos algorithm, then uT

1 p(A)v1 = eT
1 p(Tm)e1 for any

polynomial p of degree ≤ 2(m − 1).

Proof. Any polynomial p of degree ≤ 2(m − 1) can be factored as
p(z) = q(z)r(z) + s(z) where q, r, s are polynomials of degree <= m −
1. From this, if follows that uT

1 p(A)v1 = (q(A)u1)T r(A)v1 + uT
1 s(A)v1 =

(Umq(Tm)e1)T Vmr(Tm)e1 + eT
1 UT

mVmsm(Tm)e1 and the bi-orthogonality prop-
erty (5) yields the result.

Proposition 3. Let T2m be the resulting block-tridiagonal matrix at the m-th
step of the block Lanczos algorithm started with MGS(v, u) where MGS stands for
the Modified Gram-Schmidt procedure, then uT p(A)v = β(ω1e

T
1 +ω2e

T
2)p(T2m)e1

for any polynomial p of degree ≤ 2(m − 1) where ω1 and ω2 are the coefficients
relative to u from the MGS(v, u) procedure.

Proof. The block Lanczos procedure will generate an orthonormal basis for
Km(A, v) + Km(A, u), hence the assertion is already true for any polynomial
of degree ≤ m − 1. The rest of the proof proceeds as in Proposition 2 using the
basis of dimension 2m generated by the block Lanczos algorithm.
1 These are not really the Ritz values since the tridiagonal matrix is augmented in a

special way. But since the eigenvalues of T̂m+1 embed the Ritz values according to
Cauchy’s interleaving theorem, they remain close.

An Augmented Lanczos Algorithm 701

We should draw the attention of the reader on the fact that an apparent
higher polynomial order of an approach is not synonymous with higher accuracy.
A higher degree polynomial does not necessarily convey a better approximation
to a matrix function. An illustrative case in point is the Taylor series expansion
which can still converge slowly even after summing a large number of terms. As
relation (9) showed, the underlying approximations are going to depend on how
good the spectrum of A is approximated in the respective situations. Since the
three approaches usually yield comparable approximations to the spectrum, the
augmented approach stands out due to its cheaper cost.

5 Numerical Experiments

There are a number of matrix functions that arise frequently in the literature.
In our first experiment, we consider the sine function f1(x) = sin x. In the
second experiment, we consider an example from Druskin and Knizhnerman [4]:
the exponential function with square-root f2(x) = e−θ

√
x, θ ≥ 0. This example

results from the boundary value problem

Aw − d2w

dθ2 = g(θ)v.

The function f2 is the solution of the boundary value problem w(0) = v,
w(+∞) = 0 with g = 0. References in Druskin and Knizhnerman [4] include
applications where this problem arises, for example in geophysical computed
tomography. In our experiments, we used the functions on symmetric matrices
from the Harwell-Boeing collection.

Let fexact be the computed value of uT f(tA)v. For the purpose of the exper-
iments, it was computed by diagonalizing the matrix. Each figure includes three
error curves corresponding to ‖fexact−fmthapprox‖2

/‖fexact‖, where the m-th ap-
proximation, fmthapprox, is either the approximation at the m-th iteration with
the proposed augmented scheme (plain curve with circles), the approximation
with the bi-orthogonal Lanczos (dashed curved with triangles), or the classical
approximation uT w̃ = βuT Vmf(tTm)e1 (dotted curve with crosses).

On the reported examples, all methods tend to converge very well as gener-
ally observed with Krylov-based approximations to matrix functions. The first
example has some interesting observations. The bi-orthogonal Lanczos scheme
exhibits faster convergence at the beginning but is subsequently caught up by
the other methods. What is even more noticeable is that the convergence of the
bi-orthogonal scheme stalls at some point. Further investigation showed us that
a marked lost of orthogonality started in the bi-orthogonal process and so the
process was contaminated from that point onwards (since we were not dealing
with a production code, our testings did not involve re-orthogonalization tech-
niques that may be needed with Lanczos-based algorithms). Since in general,
the bi-orthogonal scheme is more sensitive to lost of orthogonality, that is yet
another unfavorable argument against using it without cross-checking.

702 R.B. Sidje, K. Burrage, and B. Philippe

5.1 Example 1

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 2474

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−1

0

1

Spectrum

Sparsity pattern and spectrum

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

m

R
el

at
iv

e
er

ro
r

at
 th

e
m

−
th

 it
er

at
io

n

Relative error in the approximation to uTsin(A)v for A of order n=662

Error curves

Fig. 1. We consider f1(x) = sin x and compute uT f1(tA)v for random u and v, and a
662-by-662 matrix A known as 662bus in the Harwell-Boeing collection. The sparsity
pattern and spectrum are shown on the left side (the spectrum lies on the real line
since A is symmetric). We took t = 0.01, for A is of large norm.

An Augmented Lanczos Algorithm 703

5.2 Example 2

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nz = 5172

0 1 2 3 4 5 6

x 10
5

−1

0

1

Spectrum

Sparsity pattern and spectrum

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

m

R
el

at
iv

e
er

ro
r

at
 th

e
m

−
th

 it
er

at
io

n

Relative error in the approximation to uTf
2
(A)v for A of order n=468

Error curves

Fig. 2. We consider f2(x) = e−θ
√

x, θ = 0.01 and compute uT f2(A)v where u and v
are randomly generated, and A is the 468-by-468 matrix known as nos5 in the Harwell-
Boeing collection

704 R.B. Sidje, K. Burrage, and B. Philippe

6 Conclusion

Evaluating f(A)v with the usual Lanczos process has the drawbacks of the stor-
age of the basis vectors or the application of the process twice. Despite the
reputed convergence properties of the method, its drawbacks deter some users
from using the process in certain situations. We have presented a cost-effective
approach for evaluating uT f(A)v using a suitably augmented Lanczos process
that does not have these drawbacks. The proposed method still has the ad-
vantage of preserving the original elements, and thus it inherits from the same
foundation and offers the recognized quality of Krylov-based methods for ap-
proximating matrix functions. Some properties were established and placed in
the broader perspective of alternative methods such as the block Lanczos and
the bi-orthogonal Lanczos algorithms. Numerical results were made to test the
quality of the method on some frequently used matrix functions.

References

1. M. Benzi and G. Golub. Bounds for the entries of matrix functions with applica-
tions to preconditioning. BIT Numerical Mathematics, 39(3):417–438, 1999.

2. L. Bergamaschi and M. Vianello. Efficient computation of the exponential operator
for large, sparse, symmetric matrices. Numer. Linear Algebra Appl., 7:27–45, 2000.

3. D. S. Bernstein and C. F. Van Loan. Rational matrix functions and rank-1 updates.
SIMAX, 22(1):145–154, 2000.

4. V. Druskin and L. Knizhnerman. Extended krylov subspaces: Approximation of
the matrix square root and related functions. SIMAX, 19(3):755–771, 1998.

5. G. Golub and G. Meurant. Matrices, moments and quadrature. In D. F. Grif-
fiths and G. A Waston, editors, Numerical Analysis 93. Pitman Research Notes in
Mathematics 303, Longman Scientific and Technical, 1993.

6. G. Golub and G. Meurant. Matrices, moments and quadrature. ii. how to compute
the norm of the error in iterative methods. BIT, 37(3):687–705, 1997.

7. M. Hochbruck and Ch. Lubich. On Krylov subspace approximations ot the matrix
exponential operator. SIAM J. Numer. Anal., 34(5):1911–1925, October 1997.

8. R. A. Horn and C. R. Johnson. Topics in Matrix Aanalysis. Cambridge University
Press, Cambridge, 1991.

9. Y. Saad. Analysis of some Krylov subspace approximations to the matrix expo-
nential operator. SIAM J. Numer. Anal., 29(1):208–227, 1992.

10. Y. Saad. Numerical Methods for Large Eigenvalue Problems. John Wiley & Sons,
Manchester Univ. Press, 1992.

11. Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. and Stat. Comp., 3(7):856–869,
July 1986.

	Introduction
	The Augmented Lanczos Algorithm
	Alternative Approaches
	Some Properties
	Numerical Experiments
	Example 1
	Example 2

	Conclusion

