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Abstract. Simulations provide a powerful means to help gain the under-
standing of crustal fault system physics required to progress towards the
goal of earthquake forecasting. Cellular Automata are efficient enough
to probe system dynamics but their simplifications render interpretations
questionable. In contrast, sophisticated elasto-dynamic models yield more
convincing results but are too computationally demanding to explore
phase space. To help bridge this gap, we develop a simple 2D elasto-
dynamic model of parallel fault systems. The model is discretised onto
a triangular lattice and faults are specified as split nodes along hori-
zontal rows in the lattice. A simple numerical approach is presented for
calculating the forces at medium and split nodes such that general non-
linear frictional constitutive relations can be modeled along faults. Single
and multi-fault simulation examples are presented using a nonlinear fric-
tional relation that is slip and slip-rate dependent in order to illustrate
the model.

1 Introduction

Numerical shear experimerny s o granular regions have exhibi;ed accelera;ing en-
ergy release in ¢ he lead-up (o large evengs[3] and a grow; h in correla;ion leng hs
in ¢ he s ress field[4]. While ; hese resuls sugges; a Critical Poing-like mechanism
in elas;o-dynamic sys;ems and { he possibiliyy o ear hquake orecas;ing, {hey do
no; prove ¢ hay such a mechanism occurs in ¢ he crus;. Cellular Ay omagon (CA)
models exhibi; accelera;ing energy release prior (o large evengs or unpredicable
behaviour in which large evenys may occur a; any (ime, depending on uning
paramegers such as ¢ he dissipagion acior and s ress ¢ ransger ragio[6]. The mean
s¢ress plogs of ¢he granular simulagions are mos; similar (o the CA mean sress
plogs near the boundary of he prediciable and unprediciable regimes sugges; -
ing {ha; elaso-dynamic sysiems may be close o {he borderline be;ween {he
predicgable and unpredicgable. To progress in resolving ¢ he quesiion of whegher
more realisyic paul; sysiem models exhibi¢ prediciable behaviour and (o deger-
mine wheg her { hey also have an unpredic able and predic; able regime depending
on ¢ uning parameyers as seen in CA simula ions, we develop a 2D elas; o-dynamic
model of parallel ingeraciing aulgs.
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Preliminary work using {he model[5] ;o0 simula e he dynamics of muliiple
parallel ing eracg ing paulg s have been perjormed and indicag e, { hrough calculagions
of the so called “inverse megric” (see [1]), tha; (he sys;em is non-ergodic. This
has major implicaiions {0 ¢ he analysis of crus; al pauly sys;ems wi hin a s; ag is;ical
physics gramework. This work has also shown {hay such pauly models exhibi; so
called "glassy” behaviour which implies  ha; mean field { heore ical analysis such
as [1] require revision 4o in roduce a memory kernel.

The elas;o-dynamic parallel ingeracg ing pauly model developed here may help
provide a crucial link be ween CA maps o phase space and  he behaviour of more
realisic elas;o-dynamic ingeraciing pauly sysiem models, and {hus, a means (o
improve undersganding of he dynamics and prediciabiliy of real paul sysiems.

2 Numerical Model

The numerical model consisgs o a 2D yriangular lagiice of masses each of which
is connecged o its six neares; neighbours by a linear spring. This discregisa;ion
yields isoiropic elasiiciyy wizh compressional and shear wave speeds relaged by
Vi = V,/V/3[2] which is a  ypical value for rocks. This simple discre; isagion allows
elas;o-dynamics (o be simulaged relagively efficienly, albei; wigh he res;riciion
of only one Poisson’s ragio. Furghermore, horizongal gauls can be easily specified
in the model by spli;ing masses in halg along a horizongal row, and simulaging
the griciional ingeraciion of spliy masses with one anogher. Henceporih, we will
reper 0 he masses as nodes of ¢he discree lagtice. In ¢he ollowing, a =0,...,5
is used (o index the six la;ice direcgions.

3 Calculation of Forces

The force on masses a; medium nodes and a; gaul; (spli;) nodes is calculaged as

F¢+FY +FF | ieM
F, = f T . + . — ) (1)
F;+F, +F;, , icFTorickl
where subscrip; i is used ;o denoje mass (node) number i, F/ is a term rep-
resenging “thermal noise” in he sysiem, Ff is the elasiic porce due (o springs
connecged o node 7, and FZf is the sum of {he elas;ic and riciional forces aciing
on he spli nodes along gauls.

3.1 Elasic Forces

The elasiic forces are calculaged by summing ¢ he elas;ic porces due o connecged
springs

SO _Jk(d® —do)e® , ieM
Fi = F)" , GEFT (2)

(F¢)~ , 1€l
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where 5 = mod(a, 6) is the lagice direciion number, k is ¢ he spring consan;, d?
is ¢ he disgance o he mass linked in direciion (3, dp is ¢ he equilibrium separagion
or lagyice spacing, M denoges he se; of medium nodes, Fr denoges he sey of
upper gauly surgace spliy nodes, and F~ denoges the sep of lower pauly surpace
spliy nodes. In the above equagion, (F§)* is the orce on the upper spliy nodes
due (o linked nodes above he raul;, and (F§)~ is {he gorce o lower spli; nodes
due (o linked nodes below (he ¢aul;, namely

3
(F)T = > K°(d” —do)e” iecF*

a=0
6
(F))” = Y k(d’ —do)e” icF™ (3)
a=3
where
o kY= , a=1,2,40rb5
¥ {ka:k/z . =03 ! (4)

specifies spring consians connecied (o spliy nodes (i.e. spring consiangs in {he
medium are k whereas he horizongal springs along he gaul; are spliy in {wo
so k% = k/2 jor a = 0,3). As such, {he {o;al elasiic force of spliy node pairs
moving as a single mass m in unison (i.e. when spli; nodes are in s a;ic fricgional
congacy ) is ¢ he sum of  he elasg ic porces on ¢ he spliy node pair F§ = (F¢)*+(F§)~
and yields {he same expression gor rorce as for the medium nodes specified by
Equagion (2).

3.2 Viscous Forces

In order o damp energy in {he closed elasiic sysiem, an arificial viscosiy is
ingroduced {hay atenuages elasiic waves as exp(—vt) where v is {he frequency
independen; agenuagion coefficieny which is relaged ;o he viscosity coefficieng
by v =v/2m (e.g. see [2]). The viscous jorce is given by

F/ = —v(vi—wv) (5)

where v is he viscosipy coefficieny, v; is ¢he velociyy of node 4, and vg is a
specified regerence velocity (e.g. in consian; scrain rage shear experimernys, we
seg vo 0 the velocity of a homogeneous elasgic sys;em undergoing shear). To
have an aienuagion coefficieny v thag is uniform in space, {he viscosiyy v mus;
be se; {0 v = 2my. Hence, for a homogeneous medium, ¢ he viscosiyy coefficien; s
a; spli nodes are halg as large as ag medium nodes.

3.3 Thermal Noise

Receng research([1,4-6] sugges;s ¢ha; jaul; sys;em models may be unders;ood
using concepy s developed in s atisgical physics and ¢ hag ¢ heir dynamics may have
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similarigies o classical Crijical-Poing sysiems. A key parameger in such sys;ems
is the temperagure. As such, we in;roduce a {hermal noise term (o provide a
means 0 sgudy he spagisgical physics of (he sysem. This is achieved by adding
a random gorcing term a¢ each {ime sgep

N; 1eM
T 7 9
Fi = {Ni/Z , i€FtorielF™ (6)

where {he magni;ude of N; relages (o ¢he effeciive temperagure op the sysiem.
The pacgor of a halg por ¢ he second case is because ¢ he noise — which is assumed {0
have uniform s agisgics in space — is shared equally by each of ¢ he spli; nodes on
gaules. This ;erm models random ime dependeny fluci uagions in s;ress wighin ¢ he
earsh due (o seismic background noise (disian; ear;hquakes, earih {ides, human
noise, wind and ocean noise, e c).

34 Veriical Componeng og Elasgic Forces on Spliy Nodes

The term F/ in Equaiion (1) represen;s he force on the spliy nodes due (o
medium elasgicipy and he gricgion. When spliy nodes are in congacy, halp of the
vergical elasiic force due ¢o linked springs is applied ;o ¢he spliy node i self and
halg is applied o {he {ouching spliy node

Ff = [(E)" +(F)7]/2 . (7)

Hence, considering {he mass of spliy nodes is m/2, spliy nodes in congac ac-
celerace in unison with vergical acceleragion [(Ff)* + (F¢)] /m (i.e. the same
verpical acceleragion as a medium node a; ¢he splii node locaiion linked o
he six neighboring nodes). When spli; nodes move ow Of congacy (i.e. when
F&)T —(F¢)~ > 0, {here is no in. erac ion be; ween ¢ he spli nodes so ; he ver,ical
y y t £ Crac % t t t t
gorce on each spliy node is ¢ he elasgic porce due o it s linked springs. Summarising
the above, he veryical elasiic force on spliy nodes is given by

[(EDT+(EF)7] /2, [F)Y = (F))7] <0
Ff = . (8)
Ey , FET=(F)T] >0

3.5 Horizongal Componeng og Fricgional and Elasgic Forces on Splig
Nodes

The horizong al yorce on a spliy node is he sum oy ¢ he horizon, al elas; ic force due
+0 linked springs and a riciional gorce f

Fl = F;+f (9)

where F is ¢ he horizon; al elas;ic force on ¢he spliy node being considered given
by Equagion (3). In ¢ he case of a jaul; in s;aiic griciional congacy, ¢ he riciion is
such {ha; spli; nodes accelera;e horizongally in unison so

f=F) -Fl/2 (10)
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where ¢ he” is used ; o denog e ¢ he o her spliy node (ie. if we are calculaging f or ¢ he
upper spli; node, ¢hen ¢ he ’ signifies ; he lower spli; node and vice versa). Hence,
for the case of sjagic gricgional congac, ¢he spliy nodes bogh accelerage with a
horizongal acceleragion [(F)™ + (F)~] /m which is equal ;o (he acceleragion
tha; would be calculaged por a medium node o mass m ¢hay replaces ¢he splip
node pair (c.p. case por vergical forces). When (he elasic porce is sufficien ly greay
0 overcome sgagic gricgion, ¢he spliy nodes will begin o slip. Theregore, we can
wrige

| = min(| [(E2) — F£) /2, 7)) (11)

where 7 is a guncgion yhay prescribes {he griciional consgijugive relagion wigh
= —717 (ie. the riciion is equal in magni;ude and opposite in direciion on
the upper and lower paul; surpaces). Hence, ¢ he griciion can be wrigien as

(F) —F71/2 0 [I(FD) — FE] /2] <7l
[ = (12)

T , otherwise

The sign of 7 is such {ha; iy opposes slip be;ween {he nodes. As such, we can
wrige

[(F7) = FEL/I(ED) = Fg[ o, S(t— At) = stick

sgn(t) = . (13)
(Vi = V) /IVy = Val , St = At) = slip

where S(t—At) specifies { he s ag e of ¢ he spli; node a;  he previous ;ime sgep t—At

and may be eigher stick or slip. The firs; case ensures { he gricgion will oppose ¢ he

new slip velocigy of a spliy node pair ¢ ha is beginning ;o slip whereas { he second

case opposes ¢he slip velociiy of an already slipping spliy node pair. Hence, in

the upper case, {he siace changes yrom S(t — At) = stick o S(t) = slip whereas

in ¢ he lower case, ¢ he s;a;e remains unchanged (i.e. S(t) = S(t — At) = slip).
The magnigude of ¢ he gricgion is given by

7l = wl(F)” = FNT]/2 (14)

(i.e. Coulomb griciion) where the griciion coefficieny p may be a punciion of
dynamic variables such as slip or slip-rage. In { he pollowing examples, we will use
a gricgion thag is slip and slip-rage dependeny as gollows

pa + (s — pa)(1 = s(t)/De )P , $<De.
pu(t) = , (15
Md""(,us_Nd>(1_‘é(t_At/2)/V0>p2 N

where s and piq are respecively the siapic and dynamic griciion coefficien;s,
p1 and py are exponens thay congrol the punciional porm of gricgion wich slip
and slip-rage, s is the amoun; of slip during a rupgure even, $ is the slip-raie,
D. is the “crigical slip weakening disance” over which ricion weakens ;o (he
dynamic value, and V. is {he slip-ra;e when slip reaches D.. The slip-race is
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calculaged using cengred finige differences grom ¢he posigions of ¢he nodes a; he
curren; and pas; {ime s eps which is ¢ he reason why 5 is a; ime (t — At/2). This
¢ricgional relagion is slip weakening ungil {he slip equals D. and {hen remains
ag ¢he dynamic value unil { he slip-ra;e drops below he value iy a;ained when
slip firs; exceeded D.. As {he slip-rage drops guriher, (he paul; re-sireng;hens
as a guncgion of velociy and reaches yhe sgagic gricgion once ¢ he slip-rage drops
t0 zero. The second erm allows yhe pauly (o heal ager passage of a rupjure
grong and yields slip-pulse behaviour of simulag ed eary hquake rupg ures consisg eny
with observayions, ragher  han less realis;ic crack-like rupg ures which resul; from
simple slip weakening relaionships. Exponeny p; congrols {he sharpness of he
leading edge of ¢he pulse and py congrols he sharpness of (he (railing edge of
the pulse. In he pollowing examples, we will se; p1 = 2 and py = 1 which yields
a relagively symme;rical slip pulse.

4 Time Integration Scheme

A second order finite difference scheme is used (o ex;rapolaie {he posiiions in
time as pollows

(ua)e(t + At) = 2(ui)e(t) — (ue)e(t — At) + At*(ai)e(t) (16)

where (u;)¢ is the (- h componen; of {he displacemen; a; {he i~ h node and he
acceleragion a; is calculaged grom ¢he porce given by Equagion (1) as

a; — Fl/ml 5 (17)

where m; is  he mass o ¢ he i-;h node (e.g. for a homogeneous medium, m would
be consgan; excepy gor spliy nodes which would have m; = m/2). Once {he new
displacemeny s are calcula; ed, we can evaluag e ¢ he new slip-rag e a; (ime (t4At/2).
When ¢ he slip-ra; e changes sign, i.e. when sgn($(t — At/2)) = —sgn(s(t+ At/2),
i is assumed {ha; slip is s opping and {he change in sign is caused by numerical
overshooy due (o (he finieness o ¢ he {ime s ep At. In ¢ his case, we se; S(t+At/2)
0 stick.

5 Numerical Examples

In all examples, we se; At = 0.4, dy = Az =1, k=1 and m = 1 and use la;ice
dimensions o N, = 100 and N, = 101. These parameers yield a P-wave speed
of Vp = 1 (see [2]). In he single paul; examples, a horizongal gaul; was cengered
in ¢he model a; y = y50 where y, = nAy denoges he y-ordinages o the n-h row
of lagiice nodes and row indices have the range n = 0,... N, — 1. In all cases,
the verjical sirain was fixed a; €y, = 0.02 and viscosiyy was se; o v = 0.04.
Boundary condigions are circular in x and rigid in y, and {he {hermal noise N;
is se; 0 0.
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5.1 Waves Traveling through a Locked Fauly

A poin source was excized below he fauly with (he aim of verigying ha; splic
nodes in sgagic ricgional congacy behave idengically as medium nodes. The snap-
shot shown in Figure 1 shows circular compressional and shear waves propagaing
through {he locked paul;. There are no ariificial refleciions, {hus verigying {he
implemeny agion gor s;atic gricgional congacy.

Fig.1. Snapshot showing the vertical
component of velocity at time ¢ = 25
due to a point source below the fault lo-

cated at x = (50, 34). The y-ordinate of

/ ‘ 1 the horizontal fault is indicated by tic

Fault J f‘ r marks on the frame. The source was ex-
' cited by adding a Gaussian perturbation

1 Ke *(t=%0) to the horizontal component
ﬁ of displacement. Source parameters were

. : I K = 0.0001, x = 0.05 and #{, = 25. The

colour scale saturates when |u,| exceeds
0.3 times its maximum value.

-2.04e-6 2.04e-6

5.2 Rupgure of a Homogeneous Faulg

A numerical shear experimen; was conducied by driving {he upper and lower
rows of nodes, which represen; rigid driving plages, in opposite direciions a; a
consgan rage op 0.0005 (i.e. approx 0.0005 ;imes {he P-wave speed). The paul;
sgagic griccion was inijialised (o ps = 0.8 everywhere excepy a¢ ¢he middle node
locaged a; © = 50Ax, which was se; was se; 0 pus = 0.75. This provides a
weak poing or seed por the rupgure (o nucleage. The dynamic gricion was seg
t0 pg = 0.7 everywhere and the crijical slip weakening disiance was se; {0
D. = 0.02. Iniially, there was no slip along the gaul; rollowed by quasi-sia;ic
slip a; ¢he cengral weak poing when he sys;em became sufficien;ly s ressed. As
the sgress builds up, a small region of slip grows quasi-s aically around ¢ he weak
node un;il a dynamic rupgure is inigiaied which { hen propaga;es ougwards a; {he
compressional wave speed (Figures 2 and 3).

5.3 Rupgure oy a Hegerogeneous Fauly

A second shear experimen; was conducied with {he same paramegers as he
previous example excep; ¢hay bogh the s aiic and dynamic gricgion were assigned
values from a power law disgribugion, specifically p(wz,) = = {k-?N,} where
exponeng p = 0.3, N, is whiie noise, and w, and k, respeciively denoce {he
discrege locagions and wavenumbers. The range of flucuaiions gor the siaiic
griciion was ps € [0.7,0.8] and ¢ he range por ¢ he dynamic gricion was [0.55, 0.65].
Agier several slip evengs, ¢ he s;ress becomes highly heg erogeneous along  he pauly
(Figure 4) and once ¢ his happens, rupg ures ¢ ypically propagage a; approximay ely
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Fig. 2. Snapshot of the horizontal com-
ponent of velocity showing a rupture
propagating bi-directionally along the
fault at the compressional wave speed.
The y-ordinate of the horizontal fault is
indicated by tic marks on the frame. The
colour scale saturates when |u,| exceeds
0.1 times its maximum value thus allow-
ing small amplitudes to be visualised.

-6.7e-4 6.7e-4
>\0015 LA LN B B L L B | LENEL L B B
"5 3 1 Fig. 3. Slip velocity on the fault defined
o 001 1 as the horizontal velocity of upper split
9 | 1 nodes subtracted from the horizontal ve-
%0‘0055 ﬁ locity of lower split nodes.
w ol N R L

0 20 40 60 80 100

X

the shear or Rayleigh wave speed (Figures 4 & 5). Because o ¢ he heg erogeneiy,
it is yypical ¢ hag {he rupgure grong will propagage in one direcgion only and leave
a complex wave {rain pollowing ¢ he rupgure ¢rony as shown in Figure 4 (right ).

54 Multi-fault Simulation

As the mogivagion (o develop ¢ he numerical model is o s udy he physics of in-
teracying pauli sysiems, we preseny a shear experimeny wigh a number of parallel
faules o illus rag e ¢ his capabilipy. The same parame; ers were used as in ¢ he single
heg erogeneous gauly case excepy ¢hay 11 paulis were inijialised ay y = 25 + 5j Ay
where j = 0,...11 denoges y he yauly number. In ¢ his example, a lower shear rage
was used ¢han in previous examples. Namely, ¢ he speeds of {he upper and lower
rows were se; (0 0.0002 insgead of 0.0005. Figure 6 shows (he shear siress as a
guncgion of ime. The saw- oot h shapes are characg erisiic of s¢ick-slip behaviour,
with each drop being caused by a dynamic rupgure eveng on a gaulg.

Figure 7 shows snapshoy s o  he shear s;ress o, and horizon al componeng of
velociyy in he model a; {he 136050-;h {ime s;ep when a dynamic rupure even;
is occurring. The scress field in the gauly region is complex and he;erogeneous
alghough coheren; high siress bands can be seen running diagonally across { he
model. These are analogous (o grain bridges which suppor; siress in granular
models. The numerical model allows ¢ he evolugion of hese complex siress pay -
terns o be sudied. One goal of such siudies would be o dejermine whegher
there is a consis eng growih in correlagion lengg hs in (he lead-up ;o large evenys
in accord with ¢ he Critical Poing Hypo hesis or earhquakes and as seen in gran-
ular numerical models[4]. The horizons al componen; of velociyy shows a rupgure
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-1.4e-3 5.7e-3 -8.5e-5 8.5e-5

Fig. 4. Snapshots of oy, (left) and horizontal component of velocity v, (right) showing
a rupture propagating to the left at around the Rayleigh wave speed. The colour scale
of v, saturates when |v;| exceeds 0.015 times its maximum value.

. 0.015
.6 I | . . .

S 001 7 Fig. 5. Slip velocity on the fault at the
q>) 0.0 I same time as the snapshot shown in Fig-
g 05? ure 4.

wn ) I R Cl

o 20 40 60 80 100
X

propaga; ing o {he righy along {he 4-¢h faul; grom (he bogiom. In some cases, a
rupgure on one pauly will (rigger rupiure on anogher pauli. In mos; cases, rup-
tures propagage a; around he Rayleigh wave speed al hough rupg ures grequen ly
accelerage o ¢he P-wave speed, probably as a consequence of {he high driving
rage. Bogh unidireciional and bidirec;ional rupg ures were observed.

Shear stress

o N N N
o N »
1

=)
|

0 50000 1e+05
Time steps

Fig. 6. Shear stress in the multi-fault model measured on the upper & lower edges of
the lattice. The plot shows characteristic saw-tooth shapes associated with stick-slip
behaviour. The initial shear stress was non-zero to minimise the first loading time.

6 Conclusions

A simple and rela;ively efficien; numerical model is presenied {ha; provides a
means o simulage ¢he physics of parallel fauli sysiems, and hence, a means ;o
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Fig. 7. Snapshots of shear stress (left) and the horizontal component of velocity (right).
The colour scale of v, saturates when |v,| exceeds 0.05 times its maximum value. The
y-ordinates of the 11 horizontal faults are indicated by tic marks on the frame.

study wheg her elas;o-dynamic crusgal pauly models may exhibiy a dynamics hag
enables earyhquakes o be porecas;.

Acknowledgemen;.

This work has been supporied by The Universiy of Queensland, {he Aus;ralian
Research Council, and {he Aus ralian Compu; agional Eargh Sys;ems Simulagor
Major Naiional Research Faciligy.

References

1. Klein W., and Anghel M., Ferguson C.D., Rundle J.B., and Martins, J.S.S4 (2000)
Statistical analysis of a model for earthquake faults with long-range stress transfer,
in: Geocomplexity and the Physics of Earthquakes (Geophysical Monograph series;
no. 120), eds. Rundle, J.B. and Turcotte, D.L., and Klein, W., pp 43-71 (American
Geophys. Union, Washington, DC).

2. Mora, P., and Place, D. (1994) Simulation of the frictional stick-slip instability, Pure
Appl. Geophys., 143, 61-87.

3. Mora, P., Place, D., Abe, S. and Jaumé, S. (2000) Lattice solid simulation of the
physics of earthquakes: the model, results and directions, in: GeoComplexity and the
Physics of Earthquakes (Geophysical Monograph series; no. 120), eds. Rundle, J.B.,
Turcotte, D.L. & Klein, W., pp 105-125 (American Geophys. Union, Washington,
DC).

4. M())ra, P., and Place, D. (2002) Stress correlation function evolution in lattice solid
elasto-dynamic models of shear and fracture zones, and earthquake prediction, Pure
Appl. Geophys, 159, 2413-2427.

5. Mora, P., Weatherley, D., and Klein, W. (2003) Simulation of parallel interact-
ing faults and earthquake predictability, Proc. European Geophysical Society Annual
Meeting.

6. Weatherley, D. and Mora, P. (2003) Accelerating precursory activity within a class
of earthquake analog automata, Pure Appl. Geophysics, accepted.



	1 Introduction
	2 Numerical Model
	3 Calculation of Forces
	3.1 Elastic Forces
	3.2 Viscous Forces
	3.3 Thermal Noise
	3.4 Vertical Component of Elastic Forces on Split Nodes
	3.5 Horizontal Component of Frictional and Elastic Forces on Split Nodes

	4 Time Integration Scheme
	5 Numerical Examples
	5.1 Waves Traveling through a Locked Fault
	5.2 Rupture of a Homogeneous Fault
	5.3 Rupture of a Heterogeneous Fault
	5.4 Multi-fault Simulation

	6 Conclusions

