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Abstract. The mechanical behaviour of the Earth’s curst with a self-similar
structure of faults is modelled using a continuous sequence of continua each
with its own size of the averaging volume element. The overall tensorial proper-
ties scale isotropically, i.e. according to a power law with common exponent. In
fault systems modelled by sets of 2-D cracks, the scaling is isotropic for both
isotropically oriented and mutually perpendicular cracks. In the extreme anisot-
ropic case of one set of parallel cracks, all effective compliances but one be-
come zero, the non-vanishing component being scale independent. For isotropi-
cally oriented or mutually orthogonal cracks the wave propagation is character-
ised by extreme scattering, since any wave path is almost certainly intersected
by a crack. The waves are not intersected only in the case of one set of parallel
cracks. However, in this case due to its extreme anisotropy only extremely long
waves (longer than all faults) can propagate.

1 Introduction

The multiscale structure of the Earth’s crust makes it discontinuous in the sense that
usually the continuum modelling can be applied only at very large scales. This
makes the modelling quite challenging since the existing methods of discontinuous
mechanics (eg. molecular dynamics type methods such as the discrete element
method) are still computationally prohibitive in multi-scale situations.  The situa-
tion becomes considerably more tractable if there are reasons to believe that the
region of the Earth’s crust being modelled is characterised by self-similar structure
since then the concepts of fractal modelling can be used (eg, [1–5]). Such a model-
ling is based on a non-traditional philosophy according to which detailed local
modelling, which is still not possible, is sacrificed in favour of a general description
of scaling laws. 

The fractal modelling can be enhanced by the adaptation of traditional notions of
continuum mechanics to intrinsically discontinuous fractal objects. This can be ac-
complished by introducing a continuous set of continua of different scales [6–8].
These continua provide a combined description of the fractal object, which in the
spirit of fractal modelling concentrates on scaling laws of properties or state vari-
ables which are integral to each continuum. The following reasoning underpins the
method.
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Traditional continuum mechanics is based on the introduction of length H which
is considered to be infinitesimal. In practical terms, this length must be much
smaller than the problem scale, L. Since real materials are discontinuous, at least at
some scale, the length H must be considerably greater than the characteristic dimen-
sion of the discontinuities, l. Thus continuum modelling is only applicable to the
situations when l<<H<<L. It is the left part of this inequality which is impossible to
satisfy for geomaterials usually possessing discontinuities with dimensions covering
a wide range scales (eg, [1]). If the Earth’s crust structure is fractal or self-similar,
the continuum modelling can be achieved by the introduction of a continuous set of
modelling continua, each continuum being characterised by its own length H which
is treated as infinitesimal within the continuum.

Formally this can be done as follows [8]. Consider a volume of the Earth’s crust
with a fractal structure, chose a scale, H, and remove all discontinuities of size H
and greater. Thus we obtain a material with truncated structure and simultaneously
set up a scale at which the truncated material can be modelled as a continuum.
Therefore, the actual continuum modelling can be conducted for an object that is
not fractal but rather a continuum that models, in some averaging manner, material
with a certain structure of discontinuities of sizes smaller than H. By varying H one 
can model self-similar fractal objects by a continuous set of continua each of them
being characterised by its own yardstick, H, specifying the scale. Each continuum
models the fractal material at the scale H in the sense that the volume elements of
size H in both the original material and the continuum show similar response to
uniform loading. The yardstick H determines the resolution: no features with di-
mensions smaller than H are viewable in the H-continuum, [6]. Thus the H-
continuum replaces the original material with the one possessing modified micro-
structure in which only those microstructural elements present that have characteris-
tic sizes less than H. This leads to a continuum fractal modelling (Fig. 1) in which a
model is produced that possesses an additional dimension, the scale [9], on top of
conventional dimensions (four in the general case - three spatial dimensions and
time).

When a fractal (self-similar) object is modelled by a continuum of continua, the
overall characteristics of each continuum (eg, effective moduli) become functions
of H. Usually these characteristics have the same sign for all continua, so according
to the general theorem (eg, [10]) they must be represented by power functions,
f(H)=f∗Hα, where f∗ is a prefactor. This is essentially the consequence of the fact that
the fractal (self-similar) objects have no characteristic length. It should also be
noted that if a certain characteristic is bounded (for instance Poisson’s ratio) the
exponent in its scaling law must be zero. Therefore bounded integral quantities are
scale-independent. 

Many integral quantities associated with a continuum are tensorial (overall prop-
erties such as effective moduli or compliances, integral state variables such as aver-
age stress, etc.). The main feature of tensorial properties is that their components
undergo linear transformations when the coordinate frame is rotated. Since the
transformed components must also scale as power functions and because the power
functions with different exponents are linearly independent (e.g. [11]), the compo-
nents must be either zero or infinite or scale with the same exponent. In other words
for any tensor 
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Fig. 1. Continuous fractal modeling. Only three continua out of a continuum of continua are
shown 

In particular, if the modelling continua are linearly elastic, the case considered
hereafter, the tensors of general anisotropic moduli, Cijkl, and compliances, Aijkl, should
scale as

3,2,1,,,,)(,)( === lkjiHaHAHcHC ijklijklijklijkl
βα    (2) 

Therefore, the scaling of elastic characteristics must be isotropic. The anisotropy is 
only captured by the prefactors, cijkl and aijkl. The particular values of α, β, cijkl and aijkl

depend on the material structure.   
The present paper uses this approach to consider effective properties and wave

propagation in the Earth’s crust with self-similar faulting in the case where the faults
can be represented as 2-D cracks.   
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2 Elastic Moduli of Earth’s Crust with Self-Similar Distributions 
of Faults

Consider the case when the volume of Earth’s crust with faults can be modeled in
plane strain by a material containing a self-similar distribution of 2-D cracks. Sup-
pose the crack size distribution is represented by a power distribution function  

3)( −ω= llf   (3) 

Since the power functions are not integrable, we will choose the following nor-
malization

t

l
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dllfl Ω=∫
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Here, the dimensionless parameter ω is a concentration factor that ensures a speci-
fied total concentration, Ωt. This distribution has an important property that distin-
guishes it from other self-similar distributions and makes it possible to determine
the scaling laws for the effective characteristics [8]. In this distribution, the prob-
ability P(n) that in a vicinity of a crack of size l, there are cracks of smaller sizes,
from l/n to l, where n>1, is equal to P(n)~ω(n2-1) which it does not depend upon the
crack size, l. Since (3), (4) represent real distributions only asymptotically as
lmax/lmin→∞, ie as ω→0 (Ωt=const), for any n the value of ω can be chosen suffi-
ciently small to make this probability negligible for any crack size. 

Therefore, in a vicinity of any crack only cracks of considerably smaller sizes
can be found. Mechanically it means that the interaction between the cracks of simi-
lar sizes can be neglected; only the interaction between cracks of very different
sizes is to be taken into account. Thus the differential self-consistent method, Sal-
ganik [12] can be used for calculating the effective characteristics.

According to the method, the compliance or modulus increments ∆Aij, ∆Cij, i,j=1,
…, 6, at each scale are determined by the contribution of non-interacting cracks of
the corresponding scale considered in an effective continuum representing all
cracks of smaller scales. The contribution is proportional to the concentration of
this group of cracks, ωdH/H. Therefore 

HdHAASHAdHHA ijijij ),,()()( 6611 �= (5) 

HdHCCHCdHHC ijijij ),,()()( 6611 �Λ= (6) 

where Sij, Λij are homogeneous functions of the first degree specific for the geome-
try and distribution of parameters of the cracks.  
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Substitution of (2) into (5) or (6) gives the scaling equations, which are equations
to determine the exponent and prefactors:

( )661211 ,, aaaSa ijij �=β ,  ( )661211 ,, cccc ijij �Λ=α       (7) 

Isotropically Oriented Cracks 

In the case of randomly oriented cracks, the material is isotropic. Then, the expres-
sions for effective Young’s modulus, E, and Poisson’s ratio, ν, written for the case
of non-interacting cracks are (e.g., [12]): 
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where Ω is the crack concentration, Em and νm are the Young’s modulus and Pois-
son’s ratio of the material. From here the corresponding components of tensor Λij

are ΛE=-Eπ/4, Λν=-νπ/4. Then, from the second equation (7) one gets the following
equations for the exponent, α, and the prefactors e and ν:  

ωνπ−=ανωπ−=α
4

,
4

ee  (9) 

Since the Poisson’s ratio is bounded, the second equation of (9) offers two solu-
tions: either α=0 or ν=0. The first solution being substituted into the first equation
of (8) leads to a trivial case of e=0. The second solution after substituting into the
first equation of (8) gives the following scaling law 

4,,0 πω−=α==ν αeHE  (10) 

In this scaling law the prefactor e is undeterminable and should be found inde-
pendently, for instance from measurements at a certain scale. Then the scaling law
(10) will determine the modulus for other scales. This scaling exponent is not re-
lated to the fractal dimension being D=2 for the case of cracks, because the cracks
are considered as ideal cuts with no internal volume (or area in 2-D). 

Plane with Two Mutually Orthogonal Sets of Cracks

Consider a plane with two mutually orthogonal sets of cracks, Fig. 2. It is assumed
that the set of cracks perpendicular to the xi axis is characterised by the distribution
ωil

-3 such that the total distribution has the concentration factor ω=ω1 + ω2. 
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Fig. 2. Two mutually orthogonal sets of cracks with the concentration factors ω1 and ω2 respec-
tively. Dotted line shows a possible wave path. It is almost certainly crosses a crack that is par-
allel to x2 axis, however in the limiting case of a single set of parallel cracks (ω1=0) the wave
can propagate along the path shown without being interrupted

The analysis is based on Vavakin and Salganik’s [13] solution for the effective
compliances for an orthotropic plate with a set of non-interacting cracks aligned to
one of the symmetry axes of the material. Generalizing their formula one can obtain
the effective compliances for an orthotropic plate with two sets of non-interacting
cracks of concentrations Ω1 and Ω2 normal to axes x1 and x2 (in a coordinate system x1, 
x2 aligned to the symmetry axes of the material):
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Here A11

m, A22

m, A12

m, A66

m are the compliances of the material, such that the Hook’s
law has a form: ε11=A11

 mσ11+A12

 mσ22, ε22=A12

 mσ11+A22

 mσ22, ε12=½A66

 mσ12.  
Using the method outlined above the scaling equations can be obtained:
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The solution represents the scaling laws: 
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For the case of a single set of cracks, i.e. when the concentration of the other set 
vanishes, say ω2→0, the exponent and all compliances except a11 vanish. The material
becomes completely rigid in the direction x2. This can easily be understood if one
considers that in fractal materials with finite ω the total crack concentration is infinite 
implying the infinite total compliancy. What the scaling law determines is the way the
moduli change in transition from one scale to another. Relative to such moduli the
materials without cracks as well as the material in the directions not affected by
cracks (the direction x2 in this case) become infinitely rigid. In real situations we do
not have true fractal materials as there are always lower and upper cut-offs. Then the
complete rigidity simply means a very high modulus as compared to the values of
other moduli.

3 On the Possibility of Wave Propagation 

When a wave is sent through an Earth’s crust with self-similar fault system its path
may be intersected by the faults (as shown in Fig. 2). In order to determine the prob-
ability p of intersection we will use the renormalization technique. We introduce a
scale, H and consider all faults with dimensions smaller than H.  Take an arbitrary
path of length L>>H. The path length L should be large enough to make the probabil-
ity pH of faults intersecting the path independent of particular realizations of fault po-
sitions. Divide the path into m>>1 segments. Each segment can be intersected either 
by faults of dimension less than H/m – this would happen with probability pH/m – or by
faults of dimensions between H/m and H. This last probability will be denoted by q. 
Probability pH as any property should scale according to the power law. On the other
hand, 0≤pH ≤1. This implies that the exponent must be zero such that pH =const. In
particular, pH/m=pH=p. The path will not be intersected if all of its segments are not
intersected. Therefore 

( ) ( )qpp m −−=− 111       (14) 
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If q>0, i.e. faults of dimensions between H/m and H can intersect the path, the only
solution of equation (14) is p=1. This for example corresponds to the cases of isot-
ropically oriented faults or two sets of mutually orthogonal faults.  When q=0, i.e.
faults of dimensions between H/m and H cannot intersect the path, p=0. This is, for
instance, the case of one set of cracks parallel to the x1 axis (ω1=0in Fig. 2) with
wave path being parallel to the cracks. 

This result suggests that only in the case of special crack arrangements, like par-
allel cracks one can expect the wave transmission. In other cases there should be
extreme scattering. (In principle, the fact that the probability of intersection is one
does not mean that there are no paths without intersections, just there are too few of
them. So, the question of wave propagation in these cases would require further
study.) 

We now analyze the wave propagation parallel to faults in the case of one set. In
order to do this we will formally write the wave equations for the case of two mutu-
ally orthogonal sets of cracks (Fig. 2) and then set ω1=0.

Using (13) the Hook’s law can be expressed in the following form 

12
2

1
111222

2

2

1
1122111111 2

1
,, σ





ω
ω=εσ


ω
ω=εσ=ε ββ HaHaa  (15) 

Expressing σij from (15) through strains and then through displacements and sub-
stituting the result into 2-D equations of motion ∂2σij /∂xj

2=ρ∂2ui /∂t2, where i=1,2, ρ
is the density (scale independent in the case of cracks), one gets 
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After the limiting transition 01  one has β=0 and system (16) reduces to a

single equation 
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Solution of wave equation (17) will be sought in the form of the longitudinal
wave

( ))(exp)(),,( 12211 txikxtxxu ν−=  (18) 

where k is the wave number, ν is the frequency. Function Φ is determined after sub-
stitution of (18) into (17). It assumes the form

 Φ(x2)=Asinh(ν/v x2)+Bcosh(ν/v x2), where v=(ρa11)
-1/2  (19) 
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To determine constants A and B consider a case when the wave is between two
large faults (much longer than the wave length). Let these faults be at a distance 2h
apart. Then, recalling that the faults are modeled as cracks at which surfaces σ12=0 
one obtains A=0 and ν=0. Therefore the waves that can propagate have vanishing fre-
quency and, if the velocity ν/k is finite, the infinite length. This is the consequence of
the extreme anisotropy associated with the fault distribution of this type. Recalling
that the fractal medium is only an approximation to the Earth’s crust one can conclude
that even in the case of parallel faults only very long (very low frequency) longitudi-
nal waves can propagate and they propagate with very low velocity. 

4 Conclusions 

The continuum fractal modelling of mechanical behaviour of the Earth’s crust with
self-similar structure is based on representing the object as a continuum of continua of
different scales. It concentrates on scaling of overall mechanical properties and inte-
gral state variables, which is described by power laws. The tensorial quantities scale
by power laws with exponents common for all components of the tensors.

Thus, effective elastic characteristics of the Earth’s crust with self-similar faulting
structure always scale isotropically. Even in the extreme case of one set of parallel 
faults when all compliances but one vanish, since the non-vanishing component is
scale independent, the exponents are formally zero, so the scaling is still isotropic. 

Any wave path will be intersected by a fault with probability one if the faults are 
not all parallel. Only in the case of a single set of parallel faults the waves are not in-
tersected, but in this case due to the extreme anisotropy of the medium, only ex-
tremely long waves can propagate.  
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