
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 966–975, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Exploiting Stability to Reduce Time-Space Cost for
Memory Tracing

Xiaofeng Gao and Allan Snavely

San Diego Supercomputer Center, University of California, USA
xgao@cs.ucsd.edu, allans@sdsc.edu

Abstract. Memory traces record the addresses touched by a program during its
execution, enabling many useful investigations for understanding and predicting
program performance. But complete address traces are time-consuming to ac-
quire and too large to practically store except in the case of short-running pro-
grams. Also, memory traces have to be re-acquired each time the input data
(and thus the dynamic behavior of the program) changes. We observe that indi-
vidual load and store instructions typically have stable memory access patterns.
Changes in dynamic control-flow of programs, rather than variation in memory
access patterns of individual instructions, appear to be the primary cause of
overall memory behavior varying both during one execution of a program and
during re-execution of the same program on different input data. We are lever-
aging this observation to enable approximate memory traces that are smaller
than full traces, faster to acquire via sampling, much faster to re-acquire for new
input data, and have a high degree of verisimilitude relative to full traces. This
paper presents an update on our progress.

1 Introduction

Research in performance modeling and prediction relies heavily on application traces,
especially memory traces. Previous researches have shown that interactions between a
program and the memory-hierarchy of the machine on which it executes can largely
determine its performance [1,4]. In our own previous work [4], we have shown that
summarized memory traces are, to a first approximation, machine-independent; we
used memory traces in performance models to predict and explain the performance of
scientific applications with different problem sizes using both strong and weak scaling
and across several modern High Performance Computing (HPC) platforms. We fur-
ther used the models to predict the performance of future hardware upgrades and new
machines. Thus, given a memory trace it is possible to explain observed cache hit-
rates (for example) and to predict cache-hit rates for future machines. It is further
possible to guide the tuning of an application, to match that application with machines
well suited for its memory demands, and to design future machines towards the needs
of the application.

Unfortunately, complete memory traces that are the most perfect representation of
a program’s memory behavior require Gigabytes of storage. And we found that meth-
ods of trading time for space to summarize memory traces (including our own meth-
ods for recording predicted cache-hit rates by processing the address stream on-the-

 Exploiting Stability to Reduce Time-Space Cost for Memory Tracing 967

fly) are not fully satisfactory for three reasons: 1) the time required for summarizing
may increase the already severe slowdown for tracing, 2) a summary may reduce
the ability to use the same trace to predict performance on a different machine, and
3) this approach generally does not keep continuity of the dynamic execution, so
any other analysis, or even the same analysis with minor changes in the parameters
requires one to repeat the trace.

Full traces can be compressed rather than summarized to save space. Several re-
searchers [2,8] have successfully used run-of-length, SEQUITUR [10], and other
traditional lossless compression techniques such as LZV [16] to reduce trace size.
However these compression techniques neither consider nor preserve control flow
structure in the trace. Thus the compressed traces do not reflect the structure of the
application. It is hard or impossible to get a hint of what will come out from the
decompression pipe next, so it is nearly impossible to use techniques such as fast
forwarding to reduce analysis cost. Also the compression ratio varies widely de-
pending on the nature of the trace. For a memory trace with mostly random accesses
or unpredictable major branches, the compression ratio is quite low and file-size
savings minimal [13].

We are developing approximate memory traces that are reasonably small and
preserve dynamic execution information. The behaviors of the stable memory in-
structions are represented by patterns similar to regular expressions. We approxi-
mate the behaviors of random instructions with synthetically generated random
numbers. Infrequent paths in the control flow may be pruned off to further save
space. This approximating method stores smaller traces than methods for memory
trace compression when a significant amount of accesses are random. It allows fast-
forwarding and preserves a high degree of verisimilitude relative to full traces.

Rubin et.al [8] used the SEQUITUR[10] algorithm to compress memory traces
and used the resulting compressed trace to study data layout optimizations. Such
lossless compression schemes work well for streams of memory accesses which are
regular and have a lot of exact repetitions. But there are cases where lossless ap-
proaches do not work well. Since many scientific applications touch a lot of mem-
ory addresses and contain substantial interspersed randomness, there is not much
space saved by using lossless compression techniques on their memory traces. The
SIGMA tool [13] from IBM may also adopt similar approaches but with an undis-
closed compression algorithm. Judging from their published results, the quality of
compression largely depends upon the nature of the application and the input, and
the user has little power to control the output size.

In point of fact, trace analysis tools, such as various simulators for the memory
sub-system, may not be very sensitive to minor changes in the trace and therefore
lossy traces can have satisfactory results. Several researchers have shown that cache
simulators can still provide reasonable results when using sampled memory traces
as the input [18–20]. However, in these works the sampling rate is a rule-of-thumb.
There is no universal rule proposed as to where and how the memory trace should
be sampled. Different applications may require quite different sampling rates to
remain close to the original trace. Even for the same application, different input
may also require quite different sampling rates.

Several other lossy compression schemes have been proposed for particular
analysis. Kaplan suggested a lossy reduction scheme for virtual memory simula-
tions [17]. It drops addresses guaranteed to be not visible to virtual memory. This
scheme also makes certain assumptions about the hardware. Agarwal and Huffman

968 X. Gao and A. Snavely

[21] suggested a lossy trace compression scheme by exploiting spatial locality in
conjunction with temporal locality. All these lossy compression schemes are less than
satisfactory when a significant amount of memory accesses are random.

We are looking for a scheme that can find high-level memory access patterns from
the trace, yet preserves continuity and enough details for accurate performance pre-
diction. We also want to be able to control the size and accuracy of the trace.

In our previous work, we found it critical to distinguish regular and stable behav-
iors (constant or clear patterns for memory accesses) from irregular and random ones.
Currently, we have found that for the random access areas the trace can be approxi-
mated without having noticeably bad effects on subsequent analysis and modeling.
Absolute values from the random parts, where generic compression schemes and
other lossy schemes fail to have a satisfying compression ratio, turn out to be not too
important from a performance standpoint and can be replaced by generated random
values. We also observed that several very similar yet unequal sequences in memory
traces puzzle generic compression schemes and cause them to fail to have satisfactory
compression ratios. But when minor variations in sequences are ignored and lumped
together, the compression ratio can be improved by orders of magnitude again without
discernable impact on analysis and modeling steps. So when trace size is a concern,
similar sequences and random sequences are the best candidates to be approximated.
For regular and stable sequences, any generic compression scheme may be used with-
out loss. Based on these observations, we here propose a framework to detect stability
in the trace, to classify sequences by similarity and randomness, and to use that in-
formation to compress and approximate the trace using various approaches appropri-
ate to each. We show that the tradeoff between the size and the quality of the trace
can be controlled by definitions of randomness and similarity.

2 Memory Trace Break-Down

The order of addresses accessed by a program during execution is a function of its
dynamic traversal of the control-flow graph and the memory access patterns of its
individual load and store instructions. As an elucidating example, consider the code
fragment in Figure 1.1. We assume the content of array i is nearly random. It is diffi-
cult for an encoding scheme based on exact pattern detection to summarize the mem-
ory access pattern of this fragment. The difficulty arises from two factors. First there
is no particular pattern in the effective addresses of array X. Although array i, Y and
Z are accessed with fixed stride their patterns are defaced in the address stream by X
due to its random nature. Discernable order in the address stream is further mangled
by the branch instruction since the two paths in the loop have each different numbers
of memory references. Thus if an encoder simply observes the generated address
stream and attempts to detect and encode patterns, it will have difficulty achieving
much compression.

However if we focus on individual instructions and study the stride patterns of
each instruction the hidden patterns in the stream suddenly becomes clear. Instruction
1, 4, 5 all have fixed stride, while 2,3,6,7 are random. Also, there is a pattern in the
order of instructions that can be given by the regular expression
(1,4,5,6,7,1,2,3,1,2,3)*. If one random address in the same range is as good (or as
bad) as another from a performance standpoint, then reproducing the fixed strides of
instructions 1,4,5 and any random values for the addresses touched by 2,3,6,7 along

 Exploiting Stability to Reduce Time-Space Cost for Memory Tracing 969

with the order these instructions are encountered, will serve well enough to represent
this fragment’s memory behavior.

Fig. 1.1. Code Fragment

Fig. 1.2. Code Fragment with Randomness

We gather an approximate memory trace by collecting two primary kinds of infor-

mation. One keeps track of memory instruction ids in the trace and tries to find pat-
terns in order-of-instructions. The other keeps track addresses for individual instruc-
tions, and detects stride patterns in these addresses. When no clear pattern is found,
these instructions are classified as random—this is a good thing from the compression
standpoint as we assume their behavior can be usefully mimicked by some random
sequence of addresses in the same range. At this time, we should mention that the
stride patterns of each instruction typically do not change too much over different
input (section 4). It is the order-of-instructions that usually can change a lot depend-
ing on input.

When two memory instructions are in the same basic block, their relative order in
the trace is fixed: they always appear together with the same instruction distance be-
tween them. There is a one-to-one mapping from a sequence of memory instruction in
a trace to a path in the control flow graph (we assume for each function call, there is
an edge from the calling point to the entry pointer of the callee). So we can use a
stream of basic block indices to replace a stream of memory instruction ids. This is
particularly important for storing small traces. The number of basic blocks in an ap-
plication is usually significantly smaller than the number of memory instructions.

3 Detecting Memory Stride Patterns

In our framework, we use different compression approaches for different memory
instructions. If an instruction generates effective addresses randomly, we discard the
real effective addresses and use some random numbers in the same range to replace
them. When an instruction shows clear patterns in the effective addresses, we record

random

p++

Load Y[p]
...

Load Y[p]
...

if(p mod 3)

1 Load i[p]

2 Load X[i[p]]
3Store X[i[p]]

p++

4 Load Y[p]
5 Load Z[p]
6Load X[i[p]]
7 Store X[i[p]]

970 X. Gao and A. Snavely

the patterns without loss. One immediate question is how to efficiently detect pattern
and randomness of the effective addresses one instruction generates.

Common sense suggests that when a compiler generates a memory instruction, it
has a particular functionality; either it accesses a temporary variable, or a data struc-
ture in some order. The functionality of the instruction is consistent and stable (which
does not mean its access pattern is necessarily regular). This internal functionality
determines how the instruction generates the effective addresses, thus the stride be-
tween two consecutive addresses for it. For example, the instruction used to incre-
mentally traverse an array often has only two strides: one positive stride equals to the
size of the data structure and one negative stride to jump back to the beginning of the
array. When the effective addresses generated by one instruction are indeed random,
the number of strides must appear large. So the number of strides one instruction
generates can be a good approximation of the randomness of the effective addresses
of the instruction thus an indication of the nature of that instruction. We set a parame-
ter R to define “randomness”. If an instruction is observed to have less than R strides,
we classify it as regular and record the patterns without loss. Otherwise it is regarded
as random and its effective addresses will be replaced in our traces by a random num-
ber generator.

Table 1. Stride pattern categories

 1 2 3 4 5-16 >16

1 1369/
54.95%

33/
0.00%

80/
0.13%

0/ 0.00% 12/
0.02%

6/ 0.01%

2 82/
8.18%

30/
0.06%

9/ 0.00% 2/ 0.10% 4/ 0.00%

3 125/
3.29%

20/
0.00%

8/ 0.00% 9/ 0.00%

4 26/
0.02%

6/ 0.00% 8/ 0.00%

5-16 53/
7.87%

104/
0.83%

>16 149/
24.65%

Because we study stride patterns independent if dynamic control flow, these pat-

terns will be particularly useful if they do not change much over different inputs.
Table 1 shows how many instructions change their number-of-strides categories in
gzip from SPEC2000 over 5 different reference runs1.

Entry (i,i) shows the number of instructions that always have i strides for all five
runs. Entry (i,j) shows the number of instructions have either i or j strides in the 5
different runs. There are only 20 static instructions that have more than 2 strides,
these are counted multiple times in the table. The percentage entries show how much
these instructions contribute to the dynamic instruction mix. (The total dynamic in-
struction count is the average of the 5 inputs.)

As can be seen, most of the instructions (static or dynamic) have the same number
of strides regardless of input. There are only a few instructions that have different
numbers of stride patterns depending on input (entries off the diagonal). In this im-

1 The inputs of the five reference runs are input.graph, input.source, input.program, in-

put.random, input.log

 Exploiting Stability to Reduce Time-Space Cost for Memory Tracing 971

plementation, we choose R between 4 and 16. The shaded area highlights the maxi-
mum number of instructions affected by these choices.

Errors are introduced if we regard an instruction as random when in reality it is not.
Figure 1.2 shows an unpredictable branch. On either path, array Y is accessed. Be-
cause the branch takes the two paths randomly, the stride pattern of the two memory
instructions are random in our definition. However, if it is recognized that both load
instructions access the same array then it is clear that Y is not really accessed ran-
domly. In our implementation two random functions are used to approximate them
independently. Although we do not record the absolute values of the random ad-
dresses, it will be necessary to study the correlations of the effective addresses gener-
ated by the memory instructions in the same loop to reduce these errors. It is also
necessary to record statistical properties such as the range one random instruction can
access. Using these statistical properties, we can generate more "accurate" random
numbers.

4 Application Signatures

An application signature is a compressed dynamic control flow of the application for
a given input. It summarizes and approximates the time-varying behaviors of the
application on the given input. The pertinent features of signatures include the number
of iterations for loops, what paths are taken and how they are taken and how the func-
tions calls behave etc. Application signature provides valuable information about how
the program’s control flow changes with different inputs. It is can also be used to
study correlation between dynamic behaviors and the inputs.

Just as we approximate memory access pattern information, we also approximate
dynamic control flows based on stability. We instrument all the basic blocks in the
application with DyninstAPI [6]. An online analysis breaks the stream of basic block
ids into regions and studies the dynamic behaviors of those regions. For stable regions
(with no or very few variations), we keep the exact dynamic behaviors. For unstable
regions, we keep only approximated behaviors. The signature of the entire application
is composed of a set of signatures of regions and the transition patterns among these
signatures. Less significant signatures and similar signatures can be merged to sim-
plify the dynamic control flow, thus reducing the size of the application signatures.

In order to be able to tell the boundaries and study the dynamic behaviors of each
individual region, we have an extensive static analysis of the control flow graph be-
fore instrumentation. We first find all the loop heads and procedure entry blocks.
These basic blocks are called region leaders and are used to mark the boundaries of
the regions. The rest of the basic blocks are assigned to the inner-most containing
region. Figure 2.2 gives an example of the basic blocks contained in the three regions
in Fig. 2.1. The purpose of this assignment is to enable on-line analysis to study the
regions’ dynamic behaviors independently. For example, the loop headed by block 1
may have very complicated behaviors, but it does not affect the stable behavior of the
inner loop headed by 6. Notice if a region is a loop, we do not regard the loop head as
part of region. The loop head is included in the outer region as a place-holder to mark
some variation of the inner loop happens on that path.

972 X. Gao and A. Snavely

0

1

23

4 5

6

109

7 8

Fig. 2.1. Control Flow with three regions

L(0)={0,1,2,10}
L(1)={3,4,5,6,7,9}
L(6)={8}

 Fig. 2.2. Three regions

A static path in a region is a longest non-repetitive sequence of basic blocks con-

tained in that region. It also must start from the region’s leader. For example, the
region led by basic block 1 in Fig. 2 has two static paths: 135679 and 1349.

If a static path is set, the number and order of the events that can happen along the
path are fixed. The events can be procedure calls, nested loops or memory instruc-
tions. This does not mean that the actual events that happen along this path are fixed.
A static path just acts as a template and indicates some variations of the events will
happen in a deterministic manner along this static path. We use dynamic path to
summarize the actual events that happened along this static path. We define a dy-
namic path as an instance of static path with nesting structures having a signature.

After the static analysis, we instrument all the basic blocks in the application with
their region ids. An on-line inspector will then capture a trace of the basic blocks and
uses a stack to simulate the entering and exiting of the regions. Upon the completion
of each static path, a dynamic path is generated to summarize all the events that hap-
pened along the just-passed path. This dynamic path is compared to the previously
visited dynamic paths of this static path. If this is a new one, it will be inserted in the
dynamic list for later usage. Upon the exit of each region, the inspector generates a
signature to summarize the dynamic behaviors of the region in the just-past instance.
For example, the summary of a loop structure includes loop iterations, the number of
iterations the loop executed, the dynamic paths visited and the transition patterns and
distributions among the dynamic paths. The newly generated signature is then com-
pared to previous signatures of this structure and the signature list is updated if there
are no same-signatures recorded before. Otherwise the signature index is passed to the
outer region to be part of dynamic path information. Finally the application signature
is the signature of the outmost region, for example the main() function.

Although it is possible to have the inspector connected to a database and store all
the recorded signatures and dynamic paths on disk without any loss, we want to ap-
proximate unstable regions using the expected behaviors. In our implementation, each
static path has a maximum number of dynamic paths. If there are too many different
dynamic paths, the less significant ones will be merged and treated as one dynamic
path. Each region also has a maximum number of signatures. Whenever this cap is
exceeded, the inspector will choose two similar signatures and merge them. Useful
definitions of similar are an area of our ongoing investigation. One open investigation
is in how to define and compute the similarity distance between two signatures of a
structure. In our implementation, we assign different weights to each structure field ad

 Exploiting Stability to Reduce Time-Space Cost for Memory Tracing 973

hoc. For example, the exact transition sequence of dynamic paths within a loop may
be less important from a performance standpoint than the distribution of these dy-
namic paths. So we may call two invocations of the same loop similar if they contain
similar distributions of dynamic paths. The distance between two signatures is com-
puted by summing the distances of each field times the specified weights. Another
intuition is that it may be useful to only merge the less visited signatures. In future
work we plan to describe and explore the utility of various formal definitions of struc-
ture similarity.

5 Generating Memory Traces: Analysis of Results

An approximate memory trace is generated by embedding memory stride patterns into
the applications signature.

(2001,<A4,S4,B0,ST>,(4000:4):1048576),

(1000,(1001,<A5,S4,B0,ST>:65536),

(1003<A4,S4,B0,LD><A7,S4,B0,ST>:1048575),

(1005<A7,S4,B0,LD><A5,RAN,*,LD><A5,IMM0,*,ST>:1048575),

(1007<A5,S4,B8,LD><A5,I-4,*,LD><A5,IMM0,*,ST> :65534), (1009:5)

(1,1000,(1001,<A5,S4,B0,ST>:65536),(1003<A4,S4,B0,LD><A7,S4,B0,ST>:10
48575),(1005 <A7,S4,B0,LD><A5,RAN,*,LD><A5,IMM0,*,ST>:1048575),(1007
<A5,S4,B8,LD><A5,I-4,*,LD><A5,IMM0,*,ST> :65534),(1009:5):10),

7000,10000,11000,6000,3000,
(3001<A5,RAN,*,LD><A5,IMM0,*,ST> <A4,RAN,*,ST><A7,S4,B4,LD>:1048575),

(3008<A4,S4,B8,LD><A4,IMM0,*,LD>:1048573)

Fig. 3. Generated full memory trace for IS.W with default input

The simplified approximate memory trace for IS.W is shown in Figure 3. Memory

accesses are embedded in the applications signature and demarcated with <>. Each
memory access has four fields to specify the data structure to which it belongs, the
stride, the base address and the type of the operation. For example <A4,S4,B0,ST>
means the memory instruction accesses the array 4 with stride of 4 bytes from the
index 0, and it is a store operation. <A5,RAN,*,LD><A5,IMM0,*ST> shows two
connected memory instructions. The first one is a random load from Array 5. The
second is a store operation, it stores to the exact same address as the previous load.
The application signature is demarcated with (). The number after semicolon is the
expected iterations of the loop. For conciseness, constant memory accesses, and the
jump-back negative strides for loops are removed from this trace.

We used this framework to obtain memory traces of the NPB benchmark suite. Ta-
ble 3 compares the size of our application signatures and strides pattern information to
the size of full memory traces for these benchmarks and gives the error in dynamic
instruction count for our approximations. The sizes of compressed traces by tradi-
tional means would not be much less than full traces for CG and IS because of their

974 X. Gao and A. Snavely

significant amounts of random accesses. Using approximate traces, we can get consis-
tent high “compression” ratios for all these applications.

Table 2. Size comparison and errors

 Estimated
memory

trace size2

Signature
Size

Size of the
stride pat-
terns

Error in
Instruction
count

Error in
MOPs

Error in
FLOPs

IS.S 98MB 5KB 13KB -0.001% 0.000% -0.001%
CG.S 898MB 32KB 368KB 0.006% 0.009% 0.006%
FT.S 1718MB 54KB 129KB 0.203% 0.230% -0.010%
MG.S 125MB 287KB 554KB 2.247% 2.247% -3.905%
EP.S 1007MB 1KB 5KB -0.183% -0.185% -0.198%
SP.S 3216B 272B 1KB 0.298% -3.511% 0.000%

Error in total instruction count, as given in Table 2, is only a rough indicator of the

verisimilitude of an approximate trace. The real question of interest is how well it
mimics an application’s true performance behaviors. We used the fast computation
methods described in [11] to calculate cache hit rates from the generated IS.W mem-
ory trace without simulation on three different processors: Power 4, Alpha EV67 and
McKinley. For loops with regular stride patterns, such as 1003 and 1007, the calcu-
lated cache miss rates and measured ones are indiscernible. For loops having random
access patterns, such as 1005 and 3001, the average error in cache hit rates is 2.5%.

6 Conclusion and Future Work

In this paper, we presented a framework to generate approximate memory traces. By
dividing the memory trace into stride pattern and application signature, we can differ-
entiate instructions with simple and regular access patterns from complicated or
nearly random ones. Different compression or approximation schemes are used for
different cases. In this framework, we also proposed methods to make tradeoffs be-
tween the trace size and the accuracy of the trace. Initial results have shown that this
framework with multiple compression and approximation schemes works fairly well.
The memory trace can be approximated and recorded with a small file, yet remain
fairly close to the original trace from the perspective of performance estimation.
There are still several open questions such as how to compute the distance between
two signatures, and the effect of false random instructions on the quality of the overall
trace need to be further investigated. The entire scheme needs to be scaled up to an
investigation of multiple full scientific applications and we are undertaking that now.
This work was sponsored in part by the Department of Energy Office of Science
through SciDAC award “High-End Computer System Performance: Science and En-
gineering”. This work was sponsored in part by a grant from the Department of De-
fense High Performance Computing Modernization Program (HPCMP) and the Na-
tional Security Agency.

2 The full trace size is estimated by the multiplication of the dynamic memory instruction

count and the length of the each address.

 Exploiting Stability to Reduce Time-Space Cost for Memory Tracing 975

References

1. Chen Ding and Ken Kennedy "Bandwidth-Based Performance Tuning and Prediction"
IASTED, Cambridge, MA November, 1999

2. Richard A. Uhlig, Trevor N. Mudge "Trace-driven Memory Simulation: A Survey" ACM
Computing Surveys, V29 No. 2, 1997

3. D.H. Bailey, T. Harris et.al The NAS Parallel Benchmarks 2.0 The International Journal of
Supercomputer Applications 1995

4. A. Snavely, N. Wolter, L. Carrington, R. Badia, J. Labarta, A. Purkasthaya, A Framework
to Enable Performance Modeling and Prediction Supercomputing 2002

5. ATOM, see http://www.tru64unix.compaq.com/developerstoolkit/#atom
6. B. Buck, J. Hollingsworth An API for Runtime Code Patching The International Journal of

High Performance Computing Application, 2000
7. S. P. Reiss, M. Renieris Encoding Program Executions SIGSOFT 2001
8. S. Rubin, R. Bodik, T. Chilimbi An Efficient Profile-Analysis framework for data-layout

optimization POPL 2002
9. G. Ammons, J.R. Larus Improving Data-flow Analysis with Path Profiles SIGPLAN con-

ference on programming language design and implementation. 1998
10. C.G. Nevill-Manning, I.H. Witten Compression and explanation using hierarchical

grammars. The Computer Journal 1997
11. R.E. Lander, J.D. Fix, and A. LaMarca Cache Performance Analysis of Traversals and

Random Accesses SODA 99
12. T. Ball The Concept of Dynamic Analysis ESEC/SIGSOFT FSE 1999
13. Luiz DeRose, K.Ekanadham, Jeffery K.Hollingsworth SIGMA: A Simulator Infrastructure

to Guide Memory Analysis, SuperComputing 2002
14. T. Sherwood, E. Perelman, G. Hamerly and B. Calder "Automatically Characterizing

Large Scale Program Behaviors" ASPLOS 2002
15. Steve Muchnick, Advanced Compiler Design & Implementation, Morgan Kaufmann, 1997
16. J. Ziv and A. Lempel, “A universal algorithm for sequential data compression” IEEE

Transactions on information theory, pp. 337–343, 1977.
17. Scott F. Kaplan, Yannis Smaragdakis, and Paul R. Wilson, "Trace Reduction for Virtual

Memory Simulations" SIGMETRICS '99
18. R.E. Kessler, Mark D. Hill, David A. Wood "A Comparison of Trace -Sampling Tech-

niques for Multi-Megabyte Caches " IEEE Transactions on Computers(1994)
19. D.A Wood, M.D. Hill, R.E. Kessier, "A model for Estimating Trace-sampling Miss Ra-

tios" ACM SIGMETRICS Performance Evaluation Review 1991
20. Thomas M. Conte, Mary Ann Hirsch, Wen-Mei W. Hwu "Combining Trace Sampling

with Single Pass Methods for Efficient Cache Simulation" IEEE Transaction on Com-
puters 1998

21. Anant Agarwal, Minor Huffman, "Blocking: exploiting spatial locality for trace compac-
tion", Proceedings of the ACM SIGMETRICS 1990

	1 Introduction
	2 Memory Trace Break-Down
	3 Detecting Memory Stride Patterns
	4 Application Signatures
	5 Generating Memory Traces: Analysis of Results
	6 Conclusion and Future Work

