
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 978–987, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Compress-Based Association Mining Algorithm for
Large Dataset

Mafruz Zaman Ashrafi, David Taniar, and Kate Smith

School of Business Systems, Monash University, PO BOX 63B, Clayton 3800, Australia.
{Mafruz.Ashrafi,David.Taniar,Kate.Smith}@infotech.monash.edu.au

Abstract. The association mining is one of the primary sub-areas in the field of
data mining. This technique had been used in numerous practical applications,
including consumer market basket analysis, inferring patterns from web page
access logs, network intrusion detection and pattern discovery in biological ap-
plications. Most of the traditional association-mining algorithms assume that
whole dataset can be loaded in the main memory. Hence, problem arise when
such algorithms is applied in large dataset. In this paper we present a new algo-
rithm for association mining. Our algorithm is efficient when the size of dataset
is huge that cannot be load in the main memory. The proposed algorithm also
reduces the frequent itemsets search space, by eliminating non-frequent 1-
itemsets after the first pass. Our performance evaluation shows algorithm out-
performs Apriori algorithm in different datasets.

1 Introduction

Data mining is iterative and interactive processes that explore and analyze voluminous
data in order to discover valid, novel and meaningful patterns, associations or rules,
using computationally efficient techniques [1]. It is related to the sub area of statistics
called exploratory data analysis, which has similar goals and relies on statistical meas-
ures and also closely related to the sub areas of artificial intelligence called knowledge
discovery and machine learning.

Data mining has been attracted huge attention in numerous research communities
due to its wide applicability in many areas such as retail industry, financial forecast,
decision support and intrusion detection [2]. Data mining methods include associations
clustering, classification, and prediction. One of the most important fields of the data-
mining domain is the association mining. Many interesting and efficient mining of
association rule algorithms have been proposed in the different mining literature [2, 3,
4, 5, 6, 8, 9, 10, 11]. In this paper we present an efficient association-mining algorithm
for large dataset.

Agarwal et al first introduced discovering association rules from the market basket
dataset. The Apriori algorithm is one of the most popular algorithms in the mining
association rules. There are number of extensions of the Apriori algorithm such as
Partition [5], DHP [11], etc.

A Compress-Based Association Mining Algorithm for Large Dataset 979

Discovering all association rules from very large dataset, by using support-
confidence based framework is not a trivial task. The search space is exponential in
the number of database attributes and with millions of I/O minimizations become
paramount [2].

In this paper we present an algorithm called Compress that has significant differ-
ence from the Apriori and all other algorithms those are extended from Apriori algo-
rithm. The compress algorithm loads the dataset into main memory and organized
them into different vertical partition table based on the first item of the each transac-
tion and compresses them after a specific limit. The algorithm also removes items
from the transactions if those particular items don’t have user specific support level.

The rest of paper organized as follows: In Section 2 we describe background of as-
sociation mining and its problem. We mention the problem of Apriori algorithm in
Section 3. In Section 4 we describe our proposed algorithm. The performance evalua-
tion and comparison studies are described in section 5 and we conclude at Section 6.

2 Association Mining Rules: A Background

Association mining can be described as a correlation of events which means, events
those are frequently observed together or in other words an association algorithm
creates rules that describe how often events occur together. The prime task of associa-
tion mining is to discover a set of attributes shared among a large number of objects in
a given database [1]. Two important measures for association rules are support (s) and
confidence (c), the former can be defined as an associated measure of statistical sig-
nificance of an itemset, and the later is an indication of the strength of the rule. A rule
is frequent if its support is greater than the user specified support and strong if its
confidence is greater than the user specified confidence. The following formula could
measure the confidence of an association rule.

)(

)(

L H SS u p p o r t

R H SL H SS u p p o r t
C o n f id e n c e

∪=

Consider an example of supermarket sales database shown in the figure 1(a). There
are few different items and few sample transactions of customers. In order to identify
purchase/shopping pattern from such dataset, the association rule intend to established
correlation among the different items and apply a specific level of support and confi-
dence on those correlations and discover rules. Finally, supermarket can use those
association rules knowledge for promotions, shelf placements, inventory control, cus-
tomer service and etc. Figure 1(b) shows the number of time each item appears in the
supermarket customer transaction and correlation (up to level 2) of items, those have
minimum 50% of support.

980 M.Z. Ashrafi, D. Taniar, and K. Smith

�����������	
�	��

������

����

��	

��

����

�

�

�

�

�

�������	���

�

�

�

�

�

�

�

�

�

��

���

�����

�������

�����

�����

���������

�����

���

�������

�������

� � � �

� �� �������� � � ����

��� ��� ��� ���

��� !��� ��� !��� ��� !���

�

���

� ������ � � �

��� !��� ��� !��� ��� !���

� � �

�	 �"

�

Fig. 1. (a) Supermarket dataset (b) correlation of items

Let I ={I1, I2, … , Im} be a set of distinct attributes, also called literals. Let D be the
databases of transactions, where each transaction T has a set of items such that T⊆ I,
and unique identifier (tid). The set of items also known as itemset and the number of
items in an itemset is called the length of an itemset. The support of an itemset X, is
the number of transactions it occur as a subset. An itemset is frequent if that itemset
has a user specific support. An association rule is an implication of the form X⇒Y,
where X⊆ I, Y⊆ I are itemset, and X∩Y = φ. Here, X is called antecedent, and Y con-
sequent. The rule X⇒Y has support s in transaction set D, if and only if s% of transac-
tions in D contains X∪Y and holds with confidence c in transaction set D, if and only if
c% of transactions in D that contains X also contains Y, and can be calculated by using
the formula 1.

The problem of the association rule can be divided into two subgroups. Firstly, gen-
erating all itemsets that have user specific support i.e. frequent itemsets. Secondly,
generating confidence rules from those frequent itemsets, which satisfy the user spe-
cific confidence. The formal problem is nontrivial and most crucial factor that affects
the performance of the association rules. Moreover, this problem affects more ad-
versely, if numbers of distinct attributes in database are large. For example, if a par-
ticular database has m number distinct attributes there can be 2m numbers of possible
distinct large itemsets and the problem is to find out those itemsets that have user
specific support. Where as, the later problem is relatively easy and straightforward.
For generating confidence rules from frequent itemsets those have user specific confi-
dence in the X/Y⇒Z form, where Y⊂ X and X is frequent

2.1 Apriori Algorithm

To resolve above mention problem [2] present this algorithm. This algorithm is con-
sidered as one of the most popular Association Rule Mining algorithms, however this
algorithm need as many database scan as to find longest itemset from the dataset. The
algorithm has the following steps:
− Large itemsets are generated through iterations and each iteration database is

scanned once.

A Compress-Based Association Mining Algorithm for Large Dataset 981

− In first iteration, algorithm determines large 1-itemsets (i.e. itemset of length 1) by
simply counting each item occurrence in transactions.

− Subsequent iteration consist two phases, firstly candidate sets Ck generation by
applying Apriori-gen function, using the large itemsets Lk-1 found in (k-1)th iteration
those and store in a hash tree. A node of that hash tree either contains a list of item-
sets (a leaf node) or a hash table (an interior node), secondly, the database is
scanned and support of the Ck is counted.

− Pruning away those candidate subsets from Ck, those have not required support.

3 Problems of Apriori

From the above discussion, it is clear that Apriori association-mining process is an
iterative process, and each iteration dataset needs to be read. Reading from disk in-
volves I/O operation and hence computationally intensive. To read disk resident data
at every pass of the association mining-algorithm resultant large number of disk I/O
operations. On the other hand, it is not always feasible to keep whole dataset within
the main memory if dataset is large. As a result, need multiple scans, which incur
some additional computational cost and degrade overall mining performance even for
small size dataset.

The performances of Apriori association-mining algorithm degrade further, if it re-
quires to read disk resident data for every pass in order to generate itemsets then it will
not able to perceive those transactions that have identical itemsets and therefore will
unnecessarily occupy resources for repeatedly generating itemsets from such identical
transactions.

In this work, our goal is to reduce I/O operations and computational cost of asso-
ciation mining by organizing each database transaction in vertical partitioned-based
table (i.e. based on the first item of a transaction) and dynamically compress those
tables in order to utilize main memory more efficiently. Furthermore, after first pass
we prune away those non-frequent 1-itemsets from each transaction of the dataset in
order to reduce unnecessary itemsets generation.

4 Proposed Algorithm

In this section we discuss different components of our association-mining algorithm to
elaborate it more precisely. Before embarking on the algorithm description, we will
briefly discuss two assumptions that we made in this work. Firstly, we assume each
transaction in dataset is either (TID, i1 i2 i3 … … ij) or (i1 i2 i3 … … ij) form. Secondly,
all items in transactions are sorted in a lexicographic order. It is worth to mention that
similar kinds of assumptions had been made in number of previous association rule
mining research [2, 5].

Our proposed algorithm works in two different phases. The first phase is known as
reading phase. In this phase, all transactions are read and based on the first item of

982 M.Z. Ashrafi, D. Taniar, and K. Smith

each transaction, we construct different range of partition table as shown in the Figure
2(a) and placed each transactions to its corresponding table. Since transaction in a
dataset may have thousand of items and not necessarily every transaction will begin
with the same item, hence this method will create number of tables. The main benefit
of this approach over the horizontal partition [5] of dataset is that, there is possibility
to find transaction with same itemsets (even if we do not find transaction with the
same itemsets in first pass, possibility of finding it is much higher after we prune item-
sets from transaction, this method will be discussed in details in the following para-
graph) in the later pass. Hence, it does not generate frequent itemsets from similar
transactions (i.e. transaction with identical itemsets) for second time. Furthermore, this
approach guaranteed that transactions with identical itemsets would only have single
occurrence in the partition table so consumes less space in the main memory.

To understand this more precisely consider previous example at figure 1(a), where
we have ten transactions consist of five different items. For each of those items we
form a partition table (a hash table). Depending on the first item of a transaction we
placed it to the corresponding table and set it counter into 1. Counter value will incre-
ment if any transaction with similar itemset is found later read. This phase also counts
the support of each itemsets of length 1 (1- itemset). The size of each partition table
defined in advance. When a particular partition table reached its maximum size the
corresponding table is compressed and temporarily kept in the secondary memory in
order to utilize the main memory more efficiently. When a partition table reaches its
maximum limit a compression technique is used in order to compress that table.

�����������
	�
����
����

���� ������ ������� �������

���

��� ����� ��� ����� ��� �����

�������

������ ��

�

������
�����
��

!��"����

��

������
�����

Fig. 2. (a) Different range partition table based on the first item of a transaction (b) Elements of
partition table.

The second phase is known as iteration phase. At the beginning of this phase actual
support of 1- itemsets is generated. After generating all frequent 1-itemsets each of the
partition table will be iterated and corresponding itemsets (length 2,3,4, ... n) will be
generated. During iteration, elements of each partition table are examined carefully.
Every non-frequent 1-itemsets are discarded if found in any transaction because of the
fact that itemset those are infrequent in initial pass cannot be able to generate frequent
itemsets in the later pass and finally rehash those transactions into the corresponding
partition table for a second time.

For example consider our previous example at Figure 1, after completion of the
first phase all non-frequent 1-itemsets are marked (in this case item E if we set
min_support = 50%). During first pass of the iteration phase each transaction is ex-

A Compress-Based Association Mining Algorithm for Large Dataset 983

amined, remove item E from each transaction that contains it and rehash those ele-
ments in the partition table. Figure 3 shows initially partition table has 9 elements and
4 elements contains item E. When we remove item E from each elements and rehash
them for a second time we will have partition, which will have 6 elements as shown in
the figure 3.

�

�

�

�

�

�

���

�����

�������

�����

���

���

��	
�� ��	���
��	

�

�

�

�

�

�

�

�

�

���

�����

�������

�����

�����

���������

�����

���

�������

��	
�� ��	���
��	

���
�
��	�
������	����������

���
�
��	�
������	����������

Fig. 3. Elements in Partition table.

The notation used in this paper is shown in figure 4. Items of the dataset I will ver-
tically be fragmented into different partitions nP and size sP. The size of a partition
table sP specify how many transaction can be hold before compress that particular
table in order to utilize main memory more efficiently. The vertical items range (i.e.
which partition table will store based on the starting item if each transaction) of each
partition table vR can be calculated by dividing the number of items I by the total
number of partition table.

s Minimum support;
c Minimum confidence;
C Candidate itemset;
N Total number of transactions;
I Total number of items;
nP Number of partition tables;
sP Size of each partition table;
vR Vertical range of each table;
f First item of a transaction;
Fi Frequent itemset of length I;

Fig. 4. Notation

The algorithm is shown in the figure 5. In the first phase, algorithm will scan the
whole dataset and insert each transaction in a particular partition table and count each
1-itemsets occurrence. In the second phase each compress partition table will load into
the main memory, remove every 1-itemsets that don’t have a specific support level and

984 M.Z. Ashrafi, D. Taniar, and K. Smith

rehash them into the table for a second time. The generate_itemset() method takes
each transaction as an input and generate itemsets of corresponding length in each
iteration. Since the algorithm prune away elements after the first phase, gener-
ate_itemset() method generate less itemsets of various length. The pruning operation is
applied after each iteration and remove itemsets those don’t have corresponding sup-
port.

/*1st phase*/
for i = 1 to N do begin
 insert_into_table(i);
 count_item(i);
end;

/*2nd phase*/
generate_frequent()
for i = 1 to nP do
begin
 t = prune(i)
 if(t! = i)
 rehash(t);
 generate_itemset(i);
end;

insert_into_table(i)
begin
 f = firstItem(i)
//find partition table for f
 pT = vR(f)
 If(t < sP)
 put(i);
 else
 {
 compress(T)
 create table(T)
 put(i);
 }
end;//insert_into_table

Fig. 5. Algorithm

5 Performance Evaluation

In experiments we used a 1.6GHz Intel P4 machine with 512MB main memory. We
used different synthetic datasets that have been proposed by [2] and those generated
datasets were previously used for evaluating performance in various mining algo-
rithms. We implemented our algorithm in Java 1.3. Since we implemented our algo-
rithm in Java, we were looking for third party Apriori algorithm in Java in order to
compare the performance our proposed algorithm with Apriori. But we were not able
to manage any third party Apriori algorithm implemented in Java.

Let D denote the number of transactions, T the average transaction size, I the size
of the maximal potentially frequent itemset, L the number of maximal potentially
frequent itemsets and N the number of items. Experiments are conducted on datasets
with different values of T and I. The parameters are shown in figure 6. The nature of
datasets (sparse or dense) is depending on the L and N values. In order to generate
dense dataset we keep both L and N values within 100.

A Compress-Based Association Mining Algorithm for Large Dataset 985

���� ��� ����� ��� �	
��	���

����������� �� � ��� ���

������������ �� �� ��� ���

����������� �� � ��� ���

������������ �� �� ��� ���

Fig. 6. Dataset with different parameters

Apriori algorithm we used in the comparison study was implemented in C1. Java
treats every thing as an object (except few primitive data type such as int, float, char
etc.) and object creation is considered as a costliest operation. In the past, various
organizations did some basic Input/Output performance comparison between Java and
C and result shows C outperforms Java. To give a clear picture of the above mention
argument we did some experiment to show how much time a simple and straight for-
ward Java program will take in order to generate frequent itemsets of length-1. Figure
7 (a) shows how much time Apriori implemented in C and a sample Java program
took in order to find out all itemsets of length 1. The figure 7 (b) shows how much
time took to find out itemsets of length 1, Apriori algorithm implemented in C and our
proposed compress association-mining algorithm. The compression algorithm took
more time due to the extra overhead that required in Java object creation.

0

50

100

150

200

250

300

350

T10.I8.D10M T18.I8.D10M T20.I12.D10M T22.I12.D10M

Dataset

T
im

e(
se

c)

Apriori Compress

0

50

100

150

200

T10.I8.D10M T20.I8.D10M T20.I12.D10M T22.I12.D10M

Dataset

T
im

e(
se

c)

Apriori in C Java

Fig. 7. Time taken for reading and generating itemsets of length 1, from different datasets.

Figure 8 (a, b, c, d) shows the performance comparison between the our proposed
Compress and Apriori algorithm. The Apriori algorithm we used in this study has
various options. It can store the whole dataset into the main memory during the mining
task. In the beginning we tried to run Apriori with this option but we were not success-
ful because the datasets we used in this experiment is large. Hence, we run the Apriori
algorithm without loading the dataset in the main memory.

1 The apriori algorithm was implemented by Christian Borgelt.

986 M.Z. Ashrafi, D. Taniar, and K. Smith

0

100

200
300

400

500

600

700

800

30% 35% 40% 45%

Support(T20I12D10M)

T
im

e(
se

c)

Apriori Compress

0
100

200
300

400
500

600
700
800

30% 35% 40% 45%

Support (T18I12D10M)

T
im

e(
se

c)

Apirori Compressed

0

100

200

300
400

500
600

700

800

30% 35% 40% 45%

Support(T22I12D10M)

T
im

e(
se

c)

Apriori Compress

0

50

100

150

200

250

300

30% 35% 40% 45%

Suport(T10I8D10M)

T
im

e(
se

c)
Apriori Compress

(a) (b)

(c) (d)

Fig. 8. Execution time.

As from the figure 8 it is clear that both Apriori and compress algorithm took more
time if the size of the transaction (i.e. avg. number of items) is higher and the support
level is lower. The compress algorithm prunes away those itemsets that don’t have a
specific support level after the first phase. It prunes away more itemsets from the
transaction when support level is high. Due to this fact the proposed algorithm outper-
form the Apriori in most of the cases. Moreover, in our algorithm we implemented a
better technique for generating candidate sets. Whereas, the Apriori algorithm uses the
subset operation and hence cost of generating per itemsets is increased in the later pass
[5].

Our compress algorithm performs significantly batter than Apriori algorithm in
most of the cases. We found compress algorithm achieve best performance with da-
taset T10.I8.D10M in figure 8(a), because after the initial pruning transaction size
become smaller. Hence the ratio of identical transactions after first phase is higher
than the other datasets. Both Apriori and compress algorithm took more time as ex-
pected with the dataset T20.I8.D10M shown in the figure 8 (b). This is because the
avg. length of size of each transaction which is larger than the previous dataset. In this
dataset compress algorithm generate almost equal number of 1-itemsets for support
(35%, 40%, 45%) for this reason total execution time remain the same.

From figure 8 (c) and (d), it is clear that compress algorithm took more time as
compared to Apriori algorithm when support is low and datasets have bigger transac-
tion size. This is because, the compression algorithm finds less number of non-
frequent 1-itemsets after the first phase and hence extra time required to create some

A Compress-Based Association Mining Algorithm for Large Dataset 987

extra objects. For example, in order to remove 1-itemsets from the each transaction
compress algorithm create number of objects and only able to remove small number of
1-itemsets from it. We could reduce some time if implement our compress C/C++.

6 Conclusion

In this paper we examined various issues related with association mining, we also
have described an algorithm, which is effectively generate association rules by discov-
ering frequent itemsets from large datasets. An important outcome of our algorithm is
to reduce the search space by eliminating 1-itemsets from the transactions after the
first pass. This feature may prove useful for finding frequent itemset from many real
life dense dataset. An extensive number of experimental evaluation over various da-
taset showed that our proposed compress algorithm outperforms the Apriori algorithm
in most of the cases.

Reference

1. Mohammed Javeed Zaki, “Parallel and Distributed Association Mining: A Survey”, IEEE
Concurrency, October-December 1999.

2. Mohammed Javeed Zaki, “Scalable Algorithms for Association Mining” IEEE Transac-
tions on Knowledge and Data Engineering, Vol. 12 No.2 pp. 372–390 (2000).

3. Rakesh Agrawal and Ramakrishnan Srikant, “Fast Algorithms for Mining Association
Rules in Large Database”, In Proceedings of the 2oth International Conference on Very
Large Databases, pp. 407–419, Santiago, Chile, 1994.

4. David Wai-Lok Cheung, Vincent T. Ng, Ada Wai-Chee Fu, and Yongjian Fu, “Efficient
Mining of Association Rules in Distributed Databases”, IEEE Transactions on Knowledge
and Data Engineering, Vol. 8, No. 6, pp. 911–922, 1996.

5. Ming-Syan Chen, Jiawei Han, and Philip S. Yu “Data mining: An overview from a data-
base perspective”. IEEE Transactions on Knowledge and Data Engineering, Vol 8, No 6,
pages 866–883, 1996.

6. Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe, “An Efficient Algorithm
for Mining Association Rules in Large Databases”, In Proceedings of the 21nd Interna-
tional Conference on Very Large Databases, pp. 432–444, Zurich, 1995.

7. Jiawei Han, Jian Pei, Yiwen Yin, “Mining Frequent Patterns without Candidate Genera-
tion”, In Proc. ACM SIGMOD Intl. Conference on Management of Data, 2000.

8. Mohammed Javeed Zaki, Ya Pin, “ Introduction: Recent Developments in Parallel and
Distributed Data Mining” Journal of Distributed and Parallel Databases, Vol.11, No.2,
2002.

9. Doug Burdick, Manuel Calimlim, and Johannes Gehrke. “MAFIA: a maximal frequent
itemset algorithm for transactional databases” In Intl. Conf. on Data Engineering, 2001.

10. Jong Soo Park, Ming-Syan Chen, and Philip S. Yu, “An Effective Hash Based Algorithm
for Mining Association Rules”, In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pp. 175–186, San Jose, California, 1995.

	1 Introduction
	2 Association Mining Rules: A Background
	2.1 Apriori Algorithm

	3 Problems of Apriori
	4 Proposed Algorithm
	5 Performance Evaluation
	6 Conclusion
	Reference

