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Abstract. Paroxysmal Atrial Fibrillation (PAF) prediction viability is a line of
research currently being investigated. The definition of new valid parameters for
this task may generate various heterogeneous features. Genetic Algorithms
(GAs) automatically find a set of parameters to maximize the diagnosis
capabilities of a scheme based on the K-nearest neighbours algorithm. This is an
efficient way of generating a number of possible solutions for the problem of
PAF prediction. The present paper illustrates how GAs, rather than  a statistical
study of the database can be used to select the parameters giving the best
classification rates.

1 Introduction

Atrial Fibrillation is the heart arrhythmia that most frequently causes embolic events,
75% of which generate cerebrovascular accidents [1, 2]. The automatic diagnosis of
patients that suffer PAF episodes by the analysis of ECG registers that do not contain
explicit PAF traces is a difficult task. Different authors have studied methods for PAF
prediction based on different parameters of ECG traces [3, 4, 5, 6, 7] but none of them
have obtained definitive results, and thus the problem remains open.

An international research effort has recently been made to study the viability of an
automatic diagnosis algorithm to predict Paroxysmal Atrial Fibrillation; this
concluded that such a solution is possible, with acceptable efficiency [8, 9]. An
automatic algorithm that could identify individuals with PAF characteristics is
clinically important because it would motivate more specific and complex diagnostic
tests.

The discrimination power of the parameters is measured through the Classification
rate (see equation (1) in Appendix). The problem of maximising this equation by
weighting the parameters is a multimodal optimisation problem in the sense defined
in [10], because it is desirable to determine several optima solutions rather than a
single one. Solutions based on different parameters could be useful in cases of
patients suffering known cardiac arrhythmias that would invalidate parameters such
as heart rate, PR distance, etc. Therefore we would choose a classification scheme for
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PAF diagnosis based on a set of valid parameters (i.e. not corrupted by current cardiac
arrhythmia).

Evolutionary algorithms are meta-heuristics based on natural selection, and have
been applied successfully to a wide range of optimization problems. A detailed
description of evolutionary computation may be found in [11]. In the present work, a
sequential binarised version of the genetic algorithm described in [10], called
AGEMM,  has been used for the above multimodal optimisation problem.

The present paper describes the application in Section 2 and a modular
classification algorithm in Section 3. The following section focuses on how the
classification process can be described in a genetic manner and optimised by means of
AGEMM. Finally section 5 presents a summary of the main conclusions.

2 Database Description and Problem Definition

A public database for PAF prediction evaluation is available [12] provided by
Physiobank [9]. It is composed of the ECG registers of 25 healthy individuals (n files)
and 25 patients diagnosed with PAF (p files). It is important to note that none of these
files explicitly contain any PAF episode, and therefore the diagnosis algorithms
proposed using this database will focus on ECG characteristics present in sinusoidal
mode (normal heart state). While there are 50 n files for the 25 healthy subjects (2 for
each of them), the 50 p files, corresponding to PAF patients, can be separated into two
groups:

• 25 ECG registers (one for each individual) not previous to PAF episodes,
which means that 45 minutes before and after the recorded ECG traces are
free of PAF episodes.

• 25 ECG registers (one for each individual) immediately previous to a PAF
episode.

The main topic addressed in the present study is the implementation of an
algorithm for the automatic diagnosis of PAF patients, based on ECG traces in which
PAF episodes do not appear explicitly. This means that the diagnostic capabilities of
the algorithm do not depend on the detection of PAF episodes. This would make it
possible to diagnose such a pathology in preventive medical examinations. With the
available database two different topics can be addressed:

• PAF diagnosis based on ECG traces with no PAF episode. This
application attempts to discriminate the registers of PAF patients among
the whole database.

• PAF episode onset prediction. The aim of this topic is to focus on the files
of PAF patients and to distinguish between the registers previous to PAF
episodes and all others.
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3 Modular Classification Algorithm

A low level processing algorithm was used to extract 48 parameters (RR rate, PR
distance, P-wave width, P-wave integral, etc) that we considered important to
characterise an ECG trace for PAF diagnosis [13]. In this way, each ECG file was
translated to a 48-component vector (p1, p2, … , p48). Each parameter represented a
different physical magnitude of different range. For this reason, all parameters were
typified: the average (Mi) of each parameter was calculated within the whole database
and then each parameter was divided by its corresponding Mi. In this way the new
vector components are adimensional and have a similar range; thus they can be
compared in a multiparametric classification scheme.

A modular classification algorithm for this application based on the K-nearest
neighbours has been described in [14]. The labelled vectors are the kernel of the
classification algorithm. For each new non-labelled vector, the Euclidean distances to
the labelled vectors are calculated. The label of the K-nearest neighbours is consulted
and the final calculated label is the same as that of most of the K-neighbours. All the
results shown in the following sections have been obtained with a single neighbour in
the labelling step. The modular property of this algorithm makes it easy to consider a
different number of parameters without changing the classification scheme.
Therefore, an automatic optimisation method can be applied to search subsets of
parameters that maximize the classification performance.

Some parameters have more discrimination power than others, and the algorithm
must focus on some of them to obtain representative distance differences between
PAF and healthy patterns.

In previous works [13, 14] the parameters were selected by means of a statistical
study. In the approach proposed in the present study, the use of Genetic Algorithms
avoids this data analysis and leads to diverse solutions based on different parameters.

There is a test database but  it is composed of another 100 (non-labelled) registers
that have significant statistical differences from the labelled ones used for the present
study. Furthermore, to avoid label-guessing requests, the access to results obtained
with test files was very restricted. To validate the test database, we processed the
training and test registers in the same manner, extracting the same characteristic
parameters. The classification algorithm described above was configured to
discriminate the training and test vectors, obtaining classification results around 92%.
This meant that the test files could not be used as benchmarks for classification
schemes based on these parameters.

4 Performance Optimisation through AGEMM

Evolutionary algorithms use different selection mechanisms and new (candidate)
solution generation by means of transforming old solutions. Typical transformation
operators include mutation (random changes in a solution) and crossover (also called
recombination) between any solutions in the population (set of candidate solutions).
The quality of any solution is evaluated by means of a fitness function. This sort of
cooperative interaction provides better performance than the classic search method
[15]. However, evolutionary algorithms, in particular when using elitist selection,
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tend to converge to one single optimum in the search space. In that sense, some
strategies to maintain diversity in a population may be required in multimodal
optimisation problems where more than one optimum must be obtained. Niching
methods [16], inspired by the behaviour of ecosystems with limited resources to share
between individuals in the population, include some such strategies.

In this work , the GA used in [10], has been applied for our purpose. This
algorithm performs a two-level niching technique that incorporates the benefits of an
island model [17] and the niching technique known as deterministic crowding [18].

In order to be able to modify the weight of the different parameters in the
classification scheme automatically, the input pattern is multiplied by a weight vector
(W), i.e. I=(p1, …, p48)·(w1, …, w48), by which the weights W (0 or 1) activate or
inhibit a their corresponding parameter. These weight vectors represent  the
chromosome of the different solutions optimised by AGEMM to maximise the
classification rate (fitness function) (equation 1 in Appendix). The AGEMM was used
with a population size of 10000, a mutation rate of 0.1 and 100 generations. We have
obtained interesting results for the different topics mentioned in section 2.

4.1 PAF Diagnosis Based on Two Types of ECG Traces

PAF diagnosis based on two types of ECG traces: those immediately previous to PAF
episodes and those distant from PAF episodes.
For this approach, the P vector corresponding to a patient is calculated by adding the
parameter vector extracted from the ECG trace previous to a PAF episode and the
parameter vector extracted from the ECG trace not previous to a PAF episode. The
GA generates a population of solutions characterised by their W vectors.

The GA obtains 1182 solutions with classification performance levels above 70%
representing 11.82% of the total population size. For a more detailed study, we
concentrate on the four betst solutions, those with a classification performance above
80%; their characteristics (see Appendix) are summarized in Table 1.

To illustrate that the four solutions are functionally different, we calculate the
Hamming distance between them as the number of not-common-components: d12=16,
d13=21, d14=23, d23=27, d24=21 and d34=20. The distance represents the difference
between the solutions; thus, for example, solutions 1 and 3 together are based on 43
features and only 22 of them are shared because the distance is 21. This fact can also
be shown by counting the number of active-shared-components, as shown in the
histogram in Fig. 1.

4.2 PAF Diagnosis Based on ECG Traces Immediately Previous to a PAF
Episode

The GA obtains 111 solutions with a classification performance above 70%, which
represents 1.11% of the total population size. The four best solutions are summarised
in Table 2.
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Table 1. Best results of PAF diagnosis based on the addition for the parameters extracted of
ECG traces far from PAF episodes and parameters extracted from ECG traces immediately
previous to PAF episodes.

Solution Nº Chromosome showing the active features
1 000010110001000101100001101001011000000001111111
2 000010101001101010110101100101011000000110110011
3 011001011010010101000001100100011111010101101010
4 101011011110111100101100100100001010010000110111

Solution Nº Classification
Performance (%)

Sensibility
(%)

Specificity
(%)

Number of
active features

1 84 92 76 20
2 82 88 76 22
3 82 88 76 23
4 80 84 76 25

Nº of solutions

Fig. 1. Histogram that illustrates the frequency of shared components. Only 4 parameters are
shared by the four solutions, 7 parameters are not used by any solution and 17 parameters are
shared by two solutions.
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Table 2. Best results of PAF diagnosis based on ECG traces immediately previous to a PAF
episode.

Solution Nº Chromosome showing the active features
1 000000011000100001110010010001100111100100111001
2 100001010111000010000001000110110001010000011111
3 000000001000110000100010000000111011111000000100
4 101101111110010111010011011110000000000000100010

Solution Nº Classification
Performance (%)

Sensibility
(%)

Specificity
(%)

Number of
active features

1 78 84 72 19
2 78 80 76 19
3 78 80 76 14
4 76 80 76 22

The distances (number of not-common-components) between the different
solutions are: d12=26, d13=17, d14=27, d23=23, d24=21 and d34=30. There is no parameter
active in the four solutions and only 5 are active in three solutions.

4.3 PAF Diagnosis Based on ECG Traces not Previous to a PAF Episode

The GA obtains 879 solutions with a classification performance above 70% , which
represents 8.79% of the whole population. Table 3 summarises the best four solutions.

Table 3. Best results of PAF diagnosis based on ECG traces not previous to a PAF episode.

Solution Nº Chromosome showing the active features
1 000001111111000100011111111001111001011110101001
2 011101111001000111110001011100101011011010101101
3 000101110001000110010111000110100001110000100010
4 000010111010010100110111000101110000111011001111

Solution Nº Classification
Performance (%)

Sensibility
(%)

Specificity
(%)

Number of
active features

1 84 88 80 28
2 82 88 76 28
3 82 96 68 19
4 80 88 72 25

The distances between these solutions are: d12=18, d13=21, d14=19, d23=19, d24=23 and
d34=20. Seven components are active in the four solutions, 12 components are active
in three solutions, another 12 are active in two solutions, and 12 parameters are
exclusively used in a single solution.
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4.4 PAF Episode Onset Prediction

The GA obtains 640 solutions with classification performance levels above 70%,
which represents 6.40% of the whole population. Table 4 summarises the best four
solutions.

Table 4. Best results for PAF episode onset prediction.

Solution Nº Chromosome showing the active features
1 110111011000000111111001001111111111001111010100
2 111110000111100110101010100001100000001111010101
3 010111111100001111111101110010011010011110000101
4 100000011100100110111110111011000001111101011001

Solution Nº Classification
Performance (%)

Sensibility
(%)

Specificity
(%)

Number of
active features

1 80 76 84 30
2 78 76 80 24
3 78 80 76 29
4 78 80 76 26

The distances between the individual solutions are : d12=22, d13=17, d14=24, d23=25,
d24=20 and d34=23. Six components are active in the four solutions, 16 are active in
three solutions, 14 components are used in two solutions, 9 are used exclusively by a
single solution and 3 features are not used in any solution.

5 Discussion

This paper addresses the application of PAF prediction, i.e. PAF diagnosis based on
ECG traces when no PAF episode occurs. We studied different topics related to this
application. In previous works [13, 14] we defined 48 parameters that can be
extracted from ECG traces for this application. The task of selecting some of these to
maximise the classification rate of a simple algorithm based on the K-nearest
neighbours [19] is not a trivial one. In this paper, a GA is used for the task, generating
solutions represented by a weight vector that can be used to filter the input parameter
vector, in order to activate the different parameters. It is shown that the GA reaches
classification rates of around 84% for diagnosis, generating diverse solutions based on
different parameters, and eliminating the possible redundancy of the 48 parameters.
These parameters can also be used for PAF episode prediction, with classification
rates of up to 80%. The generation of a whole population of solutions with different
characteristics is interesting, to select the ones that best fit the application aims. In this
sense, because the ECG is non-invasive, this approach to PAF detection can be
considered a first diagnostic test, and therefore it would be interesting to obtain also
high values for sensibility. This characteristic enhances the capability to detect
patients with PAF even when the classification rates for healthy subjects decrease.
Therefore, the solution with the highest sensibility is preferable among solutions with
the same classification performance levels.
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It is also interesting to note that the classification algorithm is modular, and so the
inclusion of new parameters defined by other authors is straightforward. When the
number of parameters increases, the GA optimisation task takes a long time (with 48
parameters the simulations in a Pentium III 500 MHz took a few minutes). This would
motivate a parallelisation of the GA optimisation task [10] so that it could be run on a
cluster
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Appendix

For biomedical diagnosis applications, the final diagnosis is that a patient is ill
(suffering a certain pathology) or healthy (free from this particular pathology). This
means that the classification result can be seen as  one of the following cases:

True Positive (TP). The algorithm classifies the subject as ill and the subject is in
fact ill.

True Negative (TN). The algorithm classifies the subject as healthy and the
subject is in fact healthy.

False Positive (FP). The algorithm classifies the subject as ill but the subject is
healthy.

False Negative (FN). The algorithm classifies the subject as healthy but the
subject is ill.

With these cases, different functions of interest can be defined:
Classification rate:

FNFPTNTP

TNTP
C

+++
+= (1)

Sensibility: represents the ratio between the detected ill patients and the total ill
patients.

FNTP

TP
SENSI

+
= (2)

Specificity: represents the ratio between the detected healthy subjects and the total
healthy subjects.

FPTN

TN
SPECI

+
= (3)
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