
A Metadata Tool for Retrieval from

Heterogeneous Distributed XML Documents

Young-Kwang Nam1, Joseph Goguen2, and Guilian Wang2

1 Dept. Computer Science, Yonsei University, Wonjoo, Republic of Korea
yknam@dragon.yonsei.ac.kr,

2 Dept. of Computer Science and Engineering, UCSD, La Jolla, CA 92093
goguen, guilian@cs.ucsd.edu

Abstract. A metadata approach for retrieval from heterogeneous dis-
tributed XML documents is given. A prototype system uses distributed
metadata to generate a GUI data integration tool, for describing map-
pings between master and local DTDs, by assigning index numbers and
specifying conversion functions. A DDXMI (Distributed Document XML
Metadata Interchange) file is generated based on the mappings, and used
to translate queries over the virtual master document into sub-queries
to local documents. Quilt is the XML query language. An experiment
testing feasibility is reported using three bibliography documents. The
system runs under NT, using Java servelets and JavaCC.

1 Introduction

As more and more information sources become available online, it is often re-
quired to retrieve information from multiple sources, e.g., in ecology, sociobiol-
ogy, medicine, and e-commerce. Hence convenient access to multiple, heteroge-
neous information sources through an integration mechanism is very desirable.
Another trend is towards semistructured data formats such as XML, to combine
the advantages of structured and unstructured data by imposing some struc-
ture on free text. XML is an easily processed format for extracting information,
without the rigidity of a relational database [7].

Our DDXMI approach (for Distributed Documents XML Metadata Inter-
change), builds on XMI [19]. The master DDXMI file includes the XML docu-
ment name or location, XML path information, and semantic information about
XML elements and attributes. A prototype system has been built that generates
a tool for meta-users to do meta-data integration, producing a master DDXMI
file, which is then used to generate queries to local documents from master
queries, and to integrate the results. This tool parses local DTDs, generates a
path for each element, and produces a convenient GUI. The mappings assign
indices, which link local elements to corresponding master elements and to the
names of conversion functions. These functions can be built-in or user-defined in
Quilt [6], our XML query language. The DDXMI is then generated based on the
mappings by collecting over index numbers. User queries are processed by Quilt
according to the generated DDXMI, by generating an executable query for each
relevant local document. With DDXMI, users can get all the answers within the

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 1020−1029, 2003.
 Springer-Verlag Berlin Heidelberg 2003



master DTD scope by just writing a query for the virtual master DTD instead
of for each document.

This system is relatively simple, since some of the most complex issues, such
as distributed queries and query optimization, are handed off to Quilt, and it
is easy to use, due to its simple GUI. The system is also flexible: users can
get any virtual integrated information system based on the same data sources,
and different users can have different virtual information systems for their own
applications.

2 Related Work

Besides data warehousing, many solutions to heterogeneity of multiple distributed
data sources have been developed, based on the mediator architecture [18]. In
structural approaches, the mediation engineer’s knowledge of application specific
requirements and local data sources are a crucial but implicit input. Integration
is obtained through a virtual integrated schema that characterizes the underly-
ing data sources. On the other hand, semantic approaches assume that enough
domain knowledge for integration is contained in the exported conceptual mod-
els, or ontologies, of each local data source. This requires a common ontology
among the data source providers, and assumes that everything of importance
is explicitly described in the ontologies; however, these assumptions are often
violated in practice.

ROBIN [11, 15], Tsimmis [17], MedMaker [16], MIX [1], and IIT Mediator [7]
are structural, mostly global-as-view approaches. According to the integrated
view definition, at query time the mediator resolves the user query into sub-
queries to suitable wrappers that translate between the local languages, models
and concepts, and the global concepts, and then integrates the information re-
turned from the wrappers. In some other structural approaches, users are given a
language or graphical interface to specify only the mappings between the global
schema and local schemas, from which the system generates the view defini-
tion. In Information Manifold (IM) [12, 17], the description logic CARIN is used
to specify local document contents and capabilities. The IM mediator is inde-
pendent of applications, since queries over the global schema are rewritten to
sub-queries over the local documents (defined as views over the global schema)
using the same algorithm for different combinations of queries and sources. The
most important advantage of local-as-view approaches is that an integrated sys-
tem built this way easily handles dynamic environments.

Clio [10, 13] introduced an interactive schema-mapping paradigm in which
users are released from the manual definition of integrated views in a different
way from IM. A graphical user interface allows users to specify value correspon-
dences, that is, how the value of an attribute in the target schema is computed
from values of the attributes in the source schema. Based on the schema map-
ping, the view definition is computed using traditional DBMS optimization tech-
niques. In addition, Clio has a mechanism allowing users to verify correctness of
the generated view definition by checking example results. However, Clio trans-

1021A Metadata Tool for Retrieval from Heterogeneous Distributed XML Documents



forms data from a single legacy source to a new schema; it remains a challenge
to employ this paradigm for virtual data integration of multiple distributed data
sources. Xyleme [5] provides a mechanism for view definitions through path-to-
path mappings in the form of a set of pairs (abstract path, concrete path) in its
query language, assuming XML data. Our prototype differs from Xyleme in its
query language independence, and in using a local-as-view mapping description,
which is translated to global-as-view when generating the corresponding DDXMI
file. Hence it combines the virtues of both global-as-view and local-as-view ap-
proaches. The present paper differs from our previous paper [14] in its focus on
problems relevant to information retrieval and documents, and in describing new
features of the implemented system to handle mappings that involve attributes,
whereas previously we could only handle mappings among elements.

Fig. 1. DDXMI system structure for distributed documents

3 The Distributed Documents XML Interface (DDXMI)

An overview of the DDXMI system structure for retrieval from distributed doc-
uments is shown in Figure 1. We assume all documents are in XML, either
directly or through wrapping. The basic idea is that a query to the distributed
documents, called a master query, is automatically rewritten to sub-queries,
called local queries, which fit each local document format using the information
stored in the DDXMI by the query generator. The DDXMI contains the path
information and functions to be applied to each local document, along with iden-
tification information such as author, date, comments, etc. The paths in a master
query are parsed by the query generator and corresponding paths of each local
document are substituted, if there are paths for the master query, by consulting
the DDXMI. If not, a null query is generated for the corresponding path in the
local query, meaning that this query cannot be applied to that document. The
result collects all the answers from each document.

1022 Y.-K. Nam, J. Goguen, and G. Wang



3.1 The Structure of DDXMI

The DDXMI is an XML document, containing meta-information about relation-
ships of paths among documents, and function names for handling semantic and
structural discrepancies. The DTD for DDXMI documents is shown in Figure
2. Elements in the master document DTD are called source elements, while cor-
<!ELEMENT DDXMI (DDXMI.header, DDXMI.isequivalent, documentspec)>

<!ELEMENT DDXMI.header (documentation,version,date,authorization)>

<!ELEMENT documentation (#PCDATA)>

<!ELEMENT version (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT authorization (#PCDATA)>

<!ELEMENT DDXMI.isequivalent (source,destination*)*>

<!ELEMENT source (#PCDATA)>

<!ELEMENT destination (#PCDATA)>

<!ELEMENT documentspec (document, (elementname, shortdescription,

longdescription, operation)*)*>

<!ELEMENT document (#PCDATA)>

<!ELEMENT elementname (#PCDATA)>

<!ELEMENT shortdescription (#PCDATA)>

<!ELEMENT longdescription (#PCDATA)>

<!ELEMENT operation (#PCDATA)>

Fig. 2. DTD for DDXMI

responding elements in local document DTDs are called destination elements.
When the query generator finds a source element name in a master query, if
its corresponding destination element is not null, then paths in the query are
replaced by paths to the destination elements to get a local query (we will see
there can be more than one destination element). For example, different sites
may represent the author field of the master document as ‘author’, ‘author-
name’, ‘name’, ‘auth’ element, etc. in different local documents. Then the author
source element in the DDXMI matches the destination element ‘author’, ‘author-
name’, ‘name’, etc., as appropriate for each local document; more complex cases
are discussed below.

3.2 Mapping between elements or attributes

Mappings are classified as One-to-One, N-to-One, and One-to-N, according to
the number of nodes (including both elements and attributes) involved in the
master DTD and a local DTD. There are three different cases for One-to-One
mapping: from an element to an element, from an element to an attribute, and
from an attribute to an element. Mapping from an element to an element is
skipped here, since it is simpler than mapping between an element and an at-
tribute.

One-to-One, from element to attribute There are two cases when an el-
ement is mapped to an attribute. If the element is a terminal node, then the

1023A Metadata Tool for Retrieval from Heterogeneous Distributed XML Documents



element name is simply matched with the attribute name. Otherwise, the at-
tribute name is removed from the path of the local document, since it does not
contribute to the path name in the DTD tree.

One-to-One, from an attribute It is straightforward to handle an attribute
in the master DTD, because an attribute is generally a leaf node of the master
DTD tree. If it matches an attribute, just replace the name. But if an element is
matched, that element will appear in the path name even if the attribute name
is not in the master query. Figure 3 shows a mapping from a price attribute in
the master query to a price element in a local document. The attribute name is
replaced by the element name. Notice that, even for mappings between attributes
and elements, there can be cases like those we classified in the previous section
as 1:N and N:1, and there can also be semantic conversion functions.

<source>/book/@price</source>

<destination>/bib/book/price</destination>

<destination>/bookstore/book/price</destination>

Fig. 3. One-to-One, attribute to element mapping

Conflicts can arise between representations. For example, the price field in
the master DTD uses dollars, but the Book3.DTD in Figure 4 represents it in
cents. Some mechanism is required to translate such representations. In this case,
when the query is parsed, it is replaced by the result of applying the function
price/100 to convert to the dollar unit.

N-to-One, and One-to-N If two or more nodes of the master DTD correspond
to one node in a local document, then the local DTD node will have more
than one index number. For example, the first name and last name nodes in the
master DTD tree in Figure 4 are mapped to the name node in the Book3 DTD
tree. In this figure, only the Book3 DTD has full names; the others have separated
first name and last name. Hence the separation function names, fstring and

1024 Y.-K. Nam, J. Goguen, and G. Wang



lstring, are included in the DDXMI file for the full name node of the Book3
DTD.

The opposite case is where one node in the master DTD maps to several
nodes in a local document. For example, the editor name in the master DTD
may be represented with separate first and last names in a local document. The
con function concatenates the first and the last name elements to get the full
name.

<source>/book/author/full_name/first_name</source>

<destination>/bookstore/book/author/name</destination>

<source>/book/author/full_name/last_name</source>

<destination>/bookstore/book/author/name</destination>

<documentspec>

<document>book.xml</document>

<elementname>/book/author/full_name/first_name</elementname>

<operation>lstring</operation>

<elementname>/book/author/full_name/last_name</elementname>

<operation>fstring</operation>

Fig. 4. N-to-One example

3.3 Replacing paths in a query

XML query languages have two kinds of paths, relative and absolute. A path
name after ‘/’ is absolute, and one after ‘//’ is relative. A master element has
a path name corresponding to local element names if they have the same index
number. But some elements in the master DTD may have a longer path name
in the local query. When assigning the index number, some nodes in the middle
of the tree may be skipped without assigning a number. Then the node in that
path will include the skipped node name in the path.

1025A Metadata Tool for Retrieval from Heterogeneous Distributed XML Documents



4 Query generation and execution examples

Assume we wish to build a library master document of DTD paths and three local
document DTD trees as shown in Figure 5. The same index number is given to
elements that have the same meaning, and each index sequence is different. Some
nodes in the DTD tree have no number, since the master index does not include
it. Book1.DTD and Book3.DTD have a price node but Book2.DTD doesn’t.
If some query includes the price element, then no query would be generated
for Book2.XML since Book2.DTD doesn’t have a price element. Based on the
index assignment in Figure 5, the DDXMI file will be generated automatically
by collecting paths with the same numbers. Using this file, users can modify or
update the DDXMI file easily, or the file can be re-generated by reassigning the
index numbers.

Fig. 5. Book1, Book2, Book3 indexed DTD trees, with master DTD

When a user enters a query name, our system generates the local queries.
Figures 6 and 7 show examples of queries, their generated local queries, and the
result of their execution, for the above three XML documents. Quilt is our XML
query language, and Kweelt, developed at the University of Washington, is used
to execute Quilt queries.

5 Conclusion and remaining issues

We have built a system for resolving both structural and semantic conflicts in a
distributed document system (assuming each local document is in XML format,
or the local sources accept XML queries and export XML data) using a GUI
tool for generating a file called DDXMI that contains information about data
structures and semantics. DTD trees are generated automatically, allowing a
data integrator to assign the same index number to nodes with the same meaning
and to name semantic functions to resolve representation differences. Then the

1026 Y.-K. Nam, J. Goguen, and G. Wang



Fig. 6. Example of local query generation

Fig. 7. A query execution result over three documents

1027A Metadata Tool for Retrieval from Heterogeneous Distributed XML Documents



DDXMI file is generated by collecting the index numbers. When generating
the DDXMI file, the mapping direction is changed from the original local-as-
view to global-as-view, to make query rewriting straightforward. A master query
from a user is then translated to queries to local documents by looking up the
corresponding paths in the DDXMI. Finally the results from local documents are
integrated, using the named semantic functions. Our DDXMI system runs under
the NT operating system using a Java servlet server and the JavaCC compiler.
Any XML documents can be handled without rebuilding or modification. The
only requirement for using this approach is to be familiar with the XML data
model, and with the relevant documents.

However some issues remain to be investigated. The current mapping mech-
anism only allows describing is-equivalent mappings between the master paths
and local paths. In order to fully use knowledge on the local documents for query
decomposition and optimization, it is planned to extend the mapping description
power to support describing and using more sophisticated kinds of relationship,
and also relationships at more levels, such as local path vs. local path, document
vs. document, and document vs. path. Second, the current prototype does not
support paths that contain wildcards, but this may happen in a document DTD
that includes recursive elements, such as a document for a family tree, or for
locations that contain sub-location(s).

If some data does not appear in a local database but is known to the global
database, we may speak of 1:0 mapping, and name a semantic function that
provides the missing information. An example is when a publisher’s database
does not include a publisher element. This is not yet implemented, but should
not be difficult. More generally, one might consider N:M mappings. If only queries
are considered, this is unnecessary, since it decomposes to N mappings that are
each 1:M, but if both queries and updates are considered, the concept of N:M
mapping is convenient in certain cases.

Another significant issue to be addressed in the future concerns the evolution,
or maintenance of metadata about documents and document collections. Even
if the documents themselves do not change (which is unlikely if they are really
databases, but likely they are really books, pamphlets, magazines, TV shows,
etc), it is very possible for our interests and understandings of the documents to
change, resulting in different DTDs, which would in turn require generating a
new DDXMI. For this reason, it would be desirable to implement an incremental
DDXMI tool, that would start from the previous DDXMI file and slightly modify
it in light of slight modifications to DTDs, instead of generating it from scratch.
Technology for this is well known in computer science, though the implementa-
tion would of course require some effort. In addition, we plan to migrate to XML
schemas, instead of DTDs.

References

1. C. Baru, A. Gupta, B. Ludascher, R. Marciano, Y. Papakonstantinou, P. Velikhov,
V. Chu. XML-Based Information Mediation with MIX. Exhibition program, ACM
Conf. Management of Data, SIGMOD’99, Philadelphia, 1999.

1028 Y.-K. Nam, J. Goguen, and G. Wang



2. D. Brickley, R. Guha, eds. Resource Description Framework (RDF) Schema Speci-
fication. W3C Proposed Recommendation. March 1999. www.w3.org/1999/TR/PR-
rdf-schema.

3. K. Beard, T. Smith. A framework for meta-information in digital libraries. In W.
Sheth, W. Klas (eds), Multimedia Data Management: Using Metadata to Integrate
and Apply Digital Media. McGraw-Hill, pp. 341–365. 1998.

4. Online Computer Library Center, Inc. Dublin Core Metadata Element Set: Ref-
erence Description, 1997. Office of Research and Special Projects, Dublin, Ohio.
www.oclc.org:5046/research/dublin core/

5. S. Cluet, P. Veltri, D. Vodislav. Views in a Large Scale XML Repository. 27th
VLDB, Roma, Italy, 2001.

6. D. Chamberlin, J. Robie, D. Florescu. Quilt: An XML Query Language for Hetero-
geneous Data Sources. WebDB 2000, LNCS, Springer, 2000.

7. D. A. Grossman, S. M. Beitzel, E. Jensen, O. Frieder. The IIT Intranet Mediator.
IEEE IT Professional, January/February, 2002.

8. A. Gupta, B. Ludascher, M.E. Martone. Knowledge-Based Integration of Neuro-
science Data Sources. 12th Intl. Conference Scientific and Statistical Database Man-
agement (SSDBM), Berlin, Germany, IEEE Computer Society, July, 2000.

9. D. Egnor, R. Lord. Structured Information Retrieval using XML. In Working Notes
of the ACM SIGIR Workshop on XML and Information Retrieval, Athens, Greece.
2000.

10. L.M. Haas, R.J. Miller, B. Niswonger, M. Tork Roth, P.M. Schwarz, E.L. Wimmers.
Transforming Heterogeneous Data with Database Middleware: Beyond Integration.
Bulletin IEEE Computer Society Technical Committee on Data Engineering. 1999.

11. I. Nishizawa, A. Takasu, J. Adachi. A Schema Integration and Query Processing
Information Retrieval. IPSJ SIGNotes DataBase System Abstract 094–009. 1993.

12. A.Y. Levy, A. Rajaraman, J.J. Ordille. Querying Heterogeneous Information
Sources Using Source Descriptions. VLDB, pp. 251–262, Bombay, India, 1996.

13. R.J. Miller, L.M. Haas, M.A. Hernandez. Schema Mapping as Query Discovery.
26th VLDB. Cairo, 2000.

14. Y.K. Nam, J. Goguen, G. Wang. A Metadata Integration Assistant Generator for
Heterogeneous Distributed Databases. LNCS 2519, 2002, pages 1332–1344, Springer.
Ontologies, DataBases, and Applications of Semantics for Large Scale Information
Systems, October 2002.

15. A. Paepcke. An object-oriented view onto public, heterogeneous text databases.
In Proceedings Ninth International Conference on Data Engineering, pages 484–493,
April 1993.

16. Y. Papakonstantinou, H. Garcia-Molina, J. Ullman. MedMaker: A Mediation Sys-
tem Based on Declarative Specifications. Data Engineering (ICDE). 1996.

17. J.D. Ullman. Information Integration Using Logical Views. 6th Int. Conference
Database Theory, LNCS 1186, Springer, 1997.

18. G. Wiederhold. Mediators in the Architecture of Future Information System. IEEE
Computer 25:3, pp. 38–49, 1992.

19. XMLMetadata Interchange. www-4.ibm.com/software/ad/library/standards/xmi.html.
(XMI)

1029A Metadata Tool for Retrieval from Heterogeneous Distributed XML Documents


	1 Introduction
	2 Related Work
	3 The Distributed Documents XML Interface (DDXMI)
	3.1 The Structure of DDXMI
	3.2 Mapping between elements or attributes
	3.3 Replacing paths in a query

	4 Query generation and execution examples
	5 Conclusion and remaining issues
	References

