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Abstract. Many problems in chemistry depend on the ability to identify the
global minimum or maximum of a function. Examples include applications in
chemometrics, optimization of reaction or operating conditions, and non-linear
least-squares analysis. This paper presents the results of the application of a new
method of deterministic global optimization, called the cutting angle method
(CAM), as applied to the prediction of molecular geometries. CAM is shown to
be competitive with other global optimization techniques for several benchmark
molecular conformation problem. CAM is a general method that can also be ap-
plied to other computational problems involving global minima, global maxima
or finding the roots of nonlinear equations.

1   Introduction

Many problems in chemistry depend on the ability to identify the global minimum or
maximum of a function. Examples include important applications in chemometrics
[1], flow rates or pH concentrations in the optimization of flow analysis methods [2-
4], statistical process control in manufacturing, the maximization of yields in synthesis
and manufacturing, non-linear least-squares analysis and the ability to predict mo-
lecular geometries. In particular, the last-mentioned application includes the areas of
protein space structure elucidation, the investigation of host-guest interactions, the
understanding of properties of superconductors and zeolites [5], and the identification
of transition states [6]. In all of these situations, one needs to find the molecular ge-
ometry which corresponds to the global minimum of the potential energy surface
(PES).

Global and deep local minima correspond to stable molecular conformations, and
they dictate both physical and chemical properties of chemical substances. Hence, the
search for the global minimum on the PES is one of the most important, albeit one of
the most challenging, optimization problems in chemistry and mathematics. Typically,
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a mix of local and global search techniques is necessary. The presence of large num-
bers of shallow local minima on the PES makes the problem unsuitable for traditional
local descent techniques in the absence of other information, and so new local search
strategies have emerged in the last few years. On the other hand, global search tech-
niques perform poorly when only localized information is available [7, 8]. Thus, the
success of a local/global search approach relies heavily on the availability of both
local and global knowledge of the PES.

The cutting angle method described here is a new global search procedure. The
authors implement it alongside known local search procedures. Existing global algo-
rithms used in the determination of molecular structures can be classified into four
(overlapping) categories: (1) deterministic methods, (2) stochastic methods,
(3) heuristic methods and (4) surface smoothing methods [9]. Reviews of these meth-
ods have been given in [10]; applications to molecular conformation problems can be
found in [7, 8, 11].

The computational cost of all known global search methods increases exponentially
with the number of variables and so those methods are “NP-hard” [12]. For the pur-
poses of practical results in the molecular conformation problem, it is therefore desir-
able to make the algorithms as efficient as possible so that conformations of a rea-
sonably large size (or dimension) can still be managed.

This paper applies the cutting angle method, which is a new, efficient, deterministic
method for global optimization, and demonstrates that it compares favorably with
other deterministic techniques (systematic search, branch-and-bound, generalized
descent) on a chosen set of chemical structures. Like other global optimization meth-
ods, it can also be applied to a range of other generic problems in theoretical chemistry
(e.g., based on cluster analysis, similarity searching, etc.[7]).

2   Theory

The need for global optimization techniques in molecular modeling has been empha-
sized by many authors [7, 8, 11]. The number of local minima on the potential energy
surface typically grows exponentially with the number of variables, and enumeration
of all local minima using multistart local descent methods is not feasible. Moreover
any method that relies only on the local information (such as derivatives), has very
slim chances to locate the global minima.

The cutting angle method (CAM) was first proposed in 1999 by Andramonov,
Bagirov, Glover and Rubinov, and subsequently improved by them [13-16]. It can be
used for both differentiable and non-differentiable functions. The one-dimensional
Piyavskii-Shubert algorithm [17], illustrated in Figure 1, emerges as a special case of
CAM. The concept of the method is to replace the original optimization problem with
a sequence of simpler (relaxed) optimization problems, so that the sequence of solu-
tions of relaxed problems converge to the global minimum of a real-valued function

��� ���� ∈��� . CAM is based on the construction of a sequence of supporting

functions (e.g., hypercones), and these must be chosen so that the maximum of the
supporting functions is the lower approximation of f.
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Fig. 1. Generalized cutting plane method of Lipschitz optimization (Pijavski-Shubert method).
All local minima of the saw-tooth cover can be explicitly enumerated. As the number of func-
tion evaluations increases, the “teeth” become smaller and the supporting functions h

K
(x) con-

verges pointwise to the required function f(x). The global minimum of h
K
(x) converges to the

global minimum of f(x)

For smooth functions, the Lipschitz property is usually interpreted as meaning that
the function has a bounded first derivative. More rigorously, we define a real-valued
function to be Lipschitz continuous if there is a real number L satisfying
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| f(x) – f(y) | < L  || x – y  || (1)

for all points x and y for which f  is defined. While we use the absolute value norm on
the left hand side of (2), on the right, any norm can be used. We define the Lipschitz
constant for f to be the least possible value for L in Eq. (1), over all x and y.  The Lip-
schitz constant is important in our situation because it provides global information
about the PES: global information is required in order to find and confirm the global
minimum of the PES on any surface. In the mathematics literature, Lipschitz pro-
gramming has attracted much attention as a method of (deterministic) global optimi-
zation [11, 17]. We make fundamental use of the choice of Lipschitz constant in ap-
plying CAM to the molecular structures considered in this article.

Figure 1 shows a function f that has been evaluated at several points x1, x2, x3, etc.
From each evaluated point on the function f, it is possible to construct a hypercone,
with slope L, and with its apex touching the function f. By using the ∞l -norm in (2),

we obtain min-type support functions. After K function evaluations at x1, x2, …,xK, the
support function
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is a lower approximation to the function f [15]. Note that the form of hK(x) is very
irregular (Figure 1), which is why it is called the saw-tooth cover of f. As more points
f(x) are evaluated, hK(x) converges point-wise to the function f from below. In par-
ticular, the sequence of global minima of hK(x) converges to the global minimum of
the function f [15]. An important result is that, for any particular K value, the global
minimum of hK(x) is guaranteed to be a lower bound for the true global minimum of
the PES f, thus measuring the uncertainty in the estimated global minimum of the PES
f, when the algorithm is terminated at some finite K.

     Uncertainty in estimated global minimum

We have previously described a fast method of building support functions and pre-
sented the computational algorithm [18], including transformation of variables from Rn

to S1. This improvement to earlier results has allowed practical application of the
CAM to medium size problems involving 10-30 variables. In this paper, we apply a
version of the CAM to molecular modelling problems where a global minimum of
PES is needed.
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3   Application to Molecular Structure Prediction

In this section, the application of the cutting angle method to the problem of prediction
of molecular conformation is described. The function f to be minimized is the potential
energy surface V.

Many models have been developed describing interactions within a molecule in
terms of atomic bonds and effective interactions. Parameterizations of molecular po-
tential functions (also known as Force Fields) include ECEPP, AMBER, CHARMM,
GROMOS, MM3, DISCOVER and others (see the review [19]). Interfacing with these
and other public domain and commercial software packages is important for practical
applicability of novel optimization methods. In this study we chose ECEPP/3 force
field (and software package) to model polypeptides.

In common with other authors, all the bond lengths and bond angles have been held
fixed (eg, see References [11, 20-24]). Hence the conformations of the various mole-
cules considered here, depend only on the torsional or dihedral angles. In turn, the
potential energy depends only on the torsional potential energy terms and those corre-
sponding to interactions between non-bonded atoms:

∑∑ +=
>

−
k

k
ji

ij tVrVV )()( torsionbondednon , (5)

where tk are the dihedral (torsional) angles and rij =rij(t1,t2,t3,…) are the distances be-
tween atoms i and j, which in turn are functions of the dihedral angles tk. In Eq.(5), the
contribution of three-body and higher-order terms to Vnon-bonded has been neglected.

CAM was used to calculate the conformations of derivitised naturally-occurring
amino acids of the form CH3CO-NH-CRH-CO-NH-CH3, where R is the amino acid
residue. The parent amino acids were proline, alanine, histidine, tyrosine and glumine,
covering the range from 5 to 10 dihedral angles.

The CAM algorithm was interfaced with the ECEPP/3 potential energy surface of
Scherga et al.[24] CAM was used as the “driver” algorithm to optimize the dihedral
angles (global variables), but at each set of dihedral angles, the potential energies were
evaluated by calls to ECEPP/3, and the three-atom angles (“� angles”) in the end
groups were optimized within the ECEPP/3 package as local variables (described in
the Appendix).

Conformations of several single aminoacids were computed initially to test the per-
formance of the combined CAM-ECEPP/3 running on a cluster of  DEC Alpha work-
stations.

The CAM software was written in C. The ECEPP/3 package [24] was compiled on
the same workstation and ran as an external process each time the potential energy
was needed. The combined CAM-ECEPP/3 code worked as desired, and the choice of
internal coordinates ensured that none of the chiral centres was inverted. (Racemisa-
tion can be a problem when Cartesian coordinates are used with Monte Carlo (Me-
tropolis) methods.)

The CAM was then applied to a neutral form of met-enkephalin, shown in Figure 2,
which is a benchmark molecular conformation problem [11]. It involves 24 independ-
ent
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Table 1. Performance of the Cutting Angle Method on the prediction of conformation of single
aminoacids and met-enkephalin

Parent aminoacid
Number

of variables

Energy of
most stable
geometry

Function
evaluations

CPU
seconds

Proline (Pro) 5 -19.81 200 21

Alanine (Ala) 7 -5.18 5000 640
Histidine (His) 8 -8.92 8000 1067
Tyrosine (Tyr) 9 -8.48 4000 607

Glutamic acid (Glu) 10 -15.87 10000 4252
Met-enkephalin 24 -11.706 120,000 4740

Energies in kcal mol-1. CPU time is for a single DEC Alpha workstation, except
the last row, where CPU time is for a cluster of 36 DEC Alpha workstations
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Fig. 2. The neutral form of met-enkephalin (Tyr-Gly-Gly-Phe-Met)

dihedral angles, giving rise to a very complex PES, involving. in the order of 1011 local
minima [11]. This problem is very challenging because of the existence of several
strong local minima, which terminate (or “trap”) local-descent algorithms. Local-
search algorithms using random initial points fail to identify the global minimum;
moreover, failures have been reported even if the initial point is chosen close to the
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global minimum [11]. As with the substituted amino acids, CAM was interfaced with
the ECEPP/3 package [24] (described in the Appendix).

The global minimum at -11.706 kcal mol-1 was found by the combination of the
CAM and ECEPP/3 internal local optimizer using the procedure described in the Ap-
pendix.

4   Discussion

Floudas has previously reported that the �BB technique [11] has outperformed other
methods (Monte Carlo, electrostatically driven Monte Carlo, diffusion equation,
simulated annealing and others) for the met-enkephalin molecule. Calculations on this
molecule have also illustrated the inadequacy of multistart local search techniques
[11]. The �BB technique required about 400,000 function evaluations to locate the
global minimum. Using the same ECEPP/3 potential function [24], the CAM of this
work was able to locate the global minimum using 120,000 function evaluations, thus
out-performing the other optimization methods. The met-enkephalin calculations have
been performed in 79 minutes on a cluster of 36 DEC Alpha workstations.

ECEPP/3 was used as a standalone software package to which calls were made
from our CAM driver module. CAM requires only the ability of third party software to
compute the value of the objective function (PES), and thus poses little restriction on
the choice of such software. This paper demonstrates that CAM can be implemented
successfully on a multiprocessor computer.

Since CAM constructs a sequence of support functions that are strict lower bounds
for the PES, Eq. (3) measures the uncertainty in the estimated global minimum of the
PES when the algorithm is terminated after K iterations. Conversely, provided that
there are sufficient computer resources, the algorithm can be continued until the esti-
mated global minimum is within some guaranteed tolerance of the true global mini-
mum. For computational convenience, the CAM algorithm uses normalized variables
Eq. (4), which makes it compatible with third-party computer code describing any
Lipschitz continuous function.

Although this paper has applied CAM to geometry optimization, CAM be applied
to any global optimization method, including clustering and other problems in che-
mometrics [1], transition-state modelling [6], variational transition state theory [25],
and optimization of flow analysis methods [2-4].

CAM can also be used to find the root(s) of nonlinear equations, e.g.

F(x) = 0

through the transformation

G(x) = ||F(x)||2 = 0

where G is the square of the norm of the original vector function F. The roots of F
correspond to the global minima of G. Applications of this kind include the varia-
tional-theory method in quantum mechanics and Monte Carlo sampling in statistical
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mechanics. These applications of the cutting angle method will be utilized in future
work.

5   Conclusion

The problem of finding the global minimum on a hypersurface with multiple local
minima has many important applications in chemistry. In this paper, we have applied a
new global optimization method to the prediction of molecular conformation model-
ling. In these applications, the typical number of local minima grows exponentially
with the number of variables, and is enormous even for relatively small molecules.
Traditional local search techniques fail to detect global minima, and hence miss the
likely molecular conformations, whereas stochastic global methods fail to confirm or
give an estimate of the global minimum.

This paper has demonstrated that the cutting angle method (CAM) is competitive
with (if not better than) other global optimization techniques in finding the minimum-
potential-energy structures, when applied to benchmark molecular calculations for the
met-enkephalin molecule.

CAM is a general global optimization method that can also be applied to other
computational problems involving global minima or global maxima. It is a robust
technique that can be applied to the optimization of non-differential (but Lipschitz
continuous) functions.
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Appendix: Schematic Overview of the Software Setup

ECEPP/3 software was installed on the same computer as our CAM global optimiza-
tion algorithm. The variables in CAM were transformed into the appropriate domain
for the dihedral angles [-�,�], and their values were supplied to the ECEPP/3 software
in a suitable configuration file. ECEPP/3 was called as an external process, which
minimized the potential energy with respect to local variables keeping the global vari-
ables constant. The CAM then read the value of the energy from the file generated by
ECEPP/3. This process was repeated at each iteration of the CAM, and at the end
(after a predefined number of iterations), CAM generated 100 good starting points for
the ECEPP/3 local minimizer. Finally, the local optimization process with respect to
all variables started from the specified 100 points to quickly improve the CAM solu-
tions. The best solution was selected as the global minimum.

Cutting Angle
Method

Decides on the
next evaluation
point, and
maintains  hK(x)

ECEPP/3
package

Performs
minimisation wrt
local parameters,
evaluates the
energy

Generates initial
configuration file
and calls ECEPP

Returns energy
value

At the end, CAM generates 100 best
candidates, and starts ECEPP local
minimisation algorithm from these points
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