A Novel Approach to Role-Based Access Control*

Song-hwa Chae!, Wonil Kim!, and Dong-kyoo Kim?

"The Graduate School of Information and Communication, Ajou University,
Suwon, 442-749, Republic of Korea
{portula,wikim}@ajou.ac.kr
2College of Information and Computer Engineering, Ajou University,
Suwon, 442-749, Republic of Korea
dkkim@ajou.ac.kr

Abstract. With the rapid growth of distributed and network systems, sharing
resources among many users become more common. As a result of that, we
encounter with new problems concerning security and privacy on the shared
resources. An access control mechanism such as role-based access control
(RBAC) is one of the solutions to cope with these problems. RBAC is an
efficient access control mechanism for organization data with role and
permission management. In this paper, we propose a new implementation
method for RBAC, which uses neural networks instead of tables. By employing
neural network, it has advantages of not using multiple storages for role-
permission tables and extra mutual exclusive data tables. It also reduces access
time for requested role and permission sets.

1 Introduction

As resource sharing among many users becomes more prevalent, we need to apply
proper access mechanism on the shared resources. System administrators and
software developers need to manage resources efficiently and ensure proper access
control of them. An access control mechanism such as role-based access control is
widely used method to solve these problems.

There have been many researches on access control mechanism in information
security. Access control mechanism is categorized into three areas, such as mandatory
access control (MAC), discretionary access control (DAC) and role-based access
control (RBAC). MAC is suitable for military system, in which data and users have
their own classification and clearance levels respectively. DAC is another access
control method on objects with user and group identifications. RBAC has emerged as
a widely acceptable alternative to classical MAC and DAC [2][5]. It can be used in
various computer systems.

In this paper, we propose a new implementation method for access control
mechanism. The main idea is employing neural network for role-based access control
mechanism instead of fixed tables. It enables to eliminate the search time of relation
tables and easily detects mutual exclusive roles.

* This study was supported by the Brain Korea 21 Project in 2003.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 1060-1068, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Novel Approach to Role-Based Access Control 1061

Chapter 2 explains the basic concept of RBAC and neural network, chapter 3
describes the proposed RBAC system using neural network, and chapter 4 evaluates
the proposed system and chapter 5 concludes with future works.

2 Background

2.1 RBAC

RBAC is a very popular mechanism widely used in both research and industry. It does
not allow users to be directly associated with permissions, instead each user can have
several roles and each role can have multiple permissions. A relationship between
users, roles and permissions is shown in Figl.

Fig. 1. Relationship among user, role and permission

Each group can be represented as a set of user U, a set of role R, and a set of
permission P.

- U={u,u, -, u}
- R={r,r, 1}
- P={p,p, " pJ
Two different types of association must be managed by the system; one is the
association between user and role, the other is the association between role and

permission [6]. It is characterized as user-role (UR)' and role-permission (RP)
relationship?.

— UR={ueU, reR|u— 2"}
— RP=(reR,peP|r— 2"}

' UR is role assignment function that assigns roles to users.
2 RP is permission assignment function that assigns permissions to roles. Both UR and PR are
represented by bits. It means active or inactive.

1062 S.-h. Chae, W. Kim, and D.-k. Kim

Consequently, in order to have proper management, the system needs to maintain
two separate association tables. General RBAC implementation uses relation tables as
shown in Table 1 and Table 2.

Table 1. User and role example table.

ry 2 T
u; 1 0 1
U 1 1 1
u; 0 0 1

Table 2. Role and permission example table.

Pi P2 Pk
T 1 0 1
) 1 1 1
r; 0 0 1

2.2 Mutual Exclusive Role in RBAC

Conflicts of interest in a role-based system may arise as a result of a user gaining
authorization for permissions associated with conflicting roles [4]. For example, if
one role requests expenditures and another role approves them, the system must
prohibit the same user from being assigned or active to both roles. In order to solve
these conflict problems, there have been many researches since middle of 1990’s.
Finally, National Institute of Standards and Technology (NIST) proposed two
Separation of Duty (SOD) reference models in 2001; Static Separation of Duty (SSD)
and Dynamic Separation of Duty (DSD). To implement these reference models, the
system must have extra tables to protect against activating mutual exclusive roles.
According to the NIST reference models, SSD should check the mutual exclusive role
in every role assignment, and the role-permission in every user’s session request
[Fig2]. DSD should check all the three relations for every user’s session request
[Fig3]. SSD is rarely used in practice and DSD imposes a lot of overload in a system
with many users due to excessive table accessing time. In fact, general processes do
not always use mutual exclusive roles.

A Novel Approach to Role-Based Access Control 1063

" S5D table |
~ b

s Lookup 4
S f e
Lookip ~ N L“’:'II*“P _ —— Lookup
e T I - i
Sessionin)

Fig. 2. SSD within RBAC

e)——Cor)——Ca>

- -
b DSD tabl -~
- § ¢
Lodkup, _ = Tookup
e "\ Lookup -~
e 1Y o
H‘-h..-"'r
Sessionin)

Fig. 3. DSD within RBAC

2.3 Neural Network

Neural network is modeling of human brain’s neuron processing. The proposed
system employs neural network instead of relation tables. It is trained using
backpropagation algorithm.

Backpropagation (BP) algorithm [1] is one of the method of neural network
learning. It learns the optimal mapping between input and desired output data by
iterative weight update. In this paper, two neural networks are used; one learns the
mapping from roles to permissions, and the other learns the reverse mapping between
them, from permissions to roles.

3 RBAC Using Neural Network

When a system employs RBAC, it needs at least 3 fixed tables for a session, such as
user-role table, role-permission table and mutual excusive role table. It requires extra
storage as well as checking time for both role-permission and mutual exclusive role
tables. To cope with these problems, we propose an effective implementation method

1064 S.-h. Chae, W. Kim, and D.-k. Kim

of RBAC. The proposed RBAC system uses neural networks instead of fixed RBAC
relation tables. By employing neural network in RBAC, the system can check the
user’s permissions in each session without using relation tables. This method does not
only reduce access time for authorization but also prevent a user from being activated
with mutual exclusive permission. It enables the system effectively applied to DSD in
RBAC with many users.

3.1 System Architecture

In the proposed system, roles, permissions and mutual exclusive roles are defined by
security administrator as in other RBAC systems. The neural network is trained to
learn the relations among them. When a particular user logs into a system, the system
is given the user’s role set. The system produces the user’s whole permission set by
using the neural network. The permission provided by neural network is used for
authorization. It is assumed that roles, permissions and their associations are static
information, whereas associations between user and role are dynamically changed.
User can have several roles and role may have multiple permissions too. The process
of this system consists of three phases: 1) neural network learning phase, 2) role
assignment phase, 3) permission extraction phase. Depending on whether a user’s role
set contains mutual exclusive roles or not, two cases are considered in system
processing.

3.2 Non-mutual Exclusive Role Case

This case is SSD in RBAC. Users do not contain mutual exclusive roles. Thus, the
system checks only user’s role and permission.

1. Neural Network Learning Phase
In the learning phase, the training data is the role-permission relation provided by
the system administrator. Each role and permission is represented by input and
output respectively. The value of input (role) and output (permission) is either ‘1’
(active/permit) or ‘0’ (non-active/denial). Since the proposed system should be
able to accommodate hierarchical RBAC, the high level role may contain the low
level permissions too. After the neural network learns the relation, the system
should be able to respond user’s permissions for access control.

2. Role Assignment Phase
In this system, a user is defined as a human being and a role is a job function
within the context of an organization [4]. Therefore, the system can assign multiple
roles to the user according to the required job. The association of the user and the
role can be changed dynamically. Our RBAC system can successfully respond to
these changes. It produces the proper set of permissions dynamically even though
the user-role association changes.

3. Permission Extraction Phase
When the user tries to access data, the system makes decisions such as permit or
denial. The proposed system makes the decision using the user’s permission set.
This permission set is generated by the neural network in the user logging phase.

A Novel Approach to Role-Based Access Control 1065

This set has the user’s whole permissions. Since all the permissions do not contain
any mutual exclusive role, mutual exclusive resolution is not necessary.

3.3 Mutual Exclusive Role Case

This case is DSD in RBAC. The user can have multiple roles, among which may
contain mutual exclusive roles, such as requesting expense and approving that. These
two permissions come from two different roles. The main point of this process is to
reduce the role set, so that the reduced role set does not have any mutual exclusive
permission. With this process, the neural network will be able to produce the reduced
permission set according the reduced role set. The process of producing the reduced
permission set is as follows.

1. Neural Network Learning Phase
In this case, we represent permissions with three types of values; ‘0°,’1’, and ‘0.5’.
The ‘0’ and ‘1’ has the same meaning as defined in non-mutual exclusive role case.
Especially, ‘0.5’ means mutual exclusive permission. An example of this is shown
in A.1. If there is a high level role containing low level mutual exclusive
permission, that node (permission) is also set to ‘0.5’. In this case, second neural
network is employed to produce the reduced role set. It will lean the relation
between permissions and roles. Each permission and role will be represented by
input and output respectively. An example of this is shown in A.2.

2. Role Assignment Phase
Same as in non-mutual exclusive case.

3. Permission Extraction Phase
The DSD system must decide permit or denial on the given request in every
session. The proposed system makes the decision using the user’s permission set.
This permission set is generated by the neural network in the user logging phase.
This set has the user’s whole permissions including mutual exclusive permission.
The process of making the whole permission set is similar to non-mutual exclusive
case. When the user tries to access data defined as mutual exclusive permission,
the system recognizes mutual exclusion case using permission’s value, which is
approximately ‘0.5’. In this case, the system should make a least user’s permission
set for the session. This permission set is a reduced set which does not contain
mutual exclusive permission. Second neural network is employed to produce
reduced role set. In order to limit user’s permission, it changed a bit to ‘1’ in user’s
permission set and others to ‘0’. This changed user’s permission set is used to
produce the limited role set. The limited role set is used to produce the reduced
permission set using the first neural network for this session. After this process, the
user has reduced permission set which is not containing mutual exclusive
permission. In any session, if the request permission is found to be the mutual
exclusive permission, the system does the same process recursively. After the
session, it will return to the previous permission set. This process protects from
executing mutual exclusive permission in any given session.

1066 S.-h. Chae, W. Kim, and D.-k. Kim

4 Evaluation

The neural network was trained and evaluated on a prototype organization [4], such as
a small company in Fig 4. It had 2 work parties, 10 roles and 6 mutual exclusive roles.
This system could accommodate unlimited number of users. The evaluation result
showed that the proposed system detected mutual exclusive role activation and
produced the user’s permission set. The role-permission relationship of Fig 4 is

represented in A.1.
Director
(DIR)

[
Frojeci TOjeCt
Leader{PL1) Leader2(PL2
|
| | |
Production uality Production Cluality
Enmineer {PELY) Engineer l(OEL) | | Engineer(PEZ) Engineer2 (QE2)

Ea

1 Engineer [(EL) | Engineer2(E2)

Project] \ Project2

| Engineer Department{ ED) |

Engineer(E)

I

Fig. 4. Example of an organization

We assumed that PL1 and PL2 had mutual exclusive roles. PE and QE had mutual
exclusive roles too. Therefore, the permissions of these roles are set to ‘0.5’.

We trained two neural networks using A.1 and A.2 respectively, with learning and
the momentum rates are 0.001. The proposed neural network had one hidden layer (30
nodes) and used sigmoid functions for hidden and output nodes. The five sample
users and their role set (representations) are given below;

— Userl : {PE1, PE2} :(0100000100)
— User2: {PE1, QE2} :(0100001000)

— User3: {PE1} : (0100000000)
— User4: {PL1, PE2} :(0001000100)
— User5 : {DIR} : (0000100000)

The system produces user’s whole permission set using first neural network. If the
user tries to access any mutual exclusive permission, it produces reduced role set
using second neural network. For example, user5 is assigned as DIR, the first neural
network will produced the whole permission set of {p1, p2, p3, p4, p5, p6, p7, pS. p9,
pl0} with access values between 0.0 and 1.0. If DIR try to access any mutual

A Novel Approach to Role-Based Access Control 1067

exclusive permission, such as p9, the system recognize it’s mutual exclusive case and
produce the reduced role PE1 using second neural network. As a result, the role of
userS which was originally defined as a DIR, has reduced to PEI in this particular
session and the permission sets as {p4, p7, p9} accordingly. The whole role and
permission set and reduced role and permission set of Userl~ User5 are shown in
Table3.

Table 3. Whole role set and reduced role set

Case | Whole Role Set ‘Whole permission Set Jotﬁgg:ri;es(iion) ﬁz(li:cse:i Perﬁiesi?gs Set
userl PE1,PE2 {p2,p4,p7,p9.p10} P9 PE1 {p4,p7.p9}
user2 PE1,QE2 {p2,p4.p7.p8,p9} p8 QE2 {p2,p4.p8}
user3 PE1 {p4.p7.p9} p9 PE1 {p4.p7.p9}
user4 PL1,PE2 {p1,p2,p3,p4,p7,p9,p10} plO PE2 {p2,p4,p10}
userS DIR {p1.p2.p3.p4,p5,p6,p7.p8.p9,p10} p9 PE1 {p4.p7.p9}

5 Conclusion and Future Works

RBAC is efficiency access control method for organization data with role and
privilege management. It constructs with role, privilege, user, and session, is
implement with each relation tables. In this paper, we proposed a new implementation
method for RBAC. The proposed methods can be applied dynamically with user’s
role change and has advantages of not using multiple storages for role-permission
tables and extra mutual exclusive data tables. It also reduces access time by
eliminating excessive table search for mutual exclusive roles. This method can be
easily extended to various access control mechanisms.

References

1. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-
propagating errors. Nature, 323, (1986) 533-536

2. E.H.Choun, A Model and administration of Role Based Privileges Enforcing Separation of
Duty. Ph.D. Dissertation, Ajou University(1998)

3. K.Mehrotra, C.K.Mohan,S.Ranka, Elements of Artificial Neural Networks, MIT Press
(1997)

4. D.F Ferraiolo, R.Sandhu, E.Gavrila, D.R.Kuhn, R.Chandramouli, Proposed NIST Standard
for Role-Based Access Control, ACM Transactions on Information and System Security,
Vol4, No3 (2001) 224-274

5. G.Ahn, R.Sandhu, Role-Based Authorization Constraints Specification, ACM Transactions
on Information and System Security, Vol3, No4,207-226 (2000)

6. D.FFerraiolo, J.F.Barkley, D.R. Kuhn, A Role-Based Access Control Model and Reference
implementation Within a Corporate Intranet, ACM Transactions on Information and System
Security, Vol2, Nol (1999) 34-64

1068 S.-h. Chae, W. Kim, and D.-k. Kim

Appendix

A.1 Input and Output Data for First Neural Network Training

Input data Out data
Role pl p2 p3 p4 pS po p7 p8 p9 | plO
ED 0000000001 0 0 0 1 0 0 0 0 0 0
El 1000000000 0 0 0 1 0 0 1 0 0 0
E2 0000000010 0 1 0 1 0 0 0 0 0 0
PE1 0100000000 0 0 0 1 0 0 1 0 1 0
PE2 0000000100 0 1 0 1 0 0 0 0 0 1
QEl 0010000000 1 0 0 1 0 0 1 0 0 0
QE2 0000001000 0 1 0 1 0 0 0 1 0 0
PL1 0001000000 | 0.5 0 1 1 0 0 1 0 0.5 0
PL2 0000010000 0 1 0 1 0 1 0 0.5 0 0.5
DIR 0000100000 | 0.5 1 0.5 1 1 0.5 1 05] 05| 05
A.2 Input and Output Data for Second Neural Network Training
Input data Out data
pl p2 p3 p4 pS p6 p7 p8 p9 | plO Role
ED 0 0 0 1 0 0 0 0 0 0 0000000001
El 0 0 0 1 0 0 1 0 0 0 1000000000
E2 0 1 0 1 0 0 0 0 0 0 0000000010
PE1 0 0 0 1 0 0 1 0 1 0 0100000000
PE2 0 1 0 1 0 0 0 0 0 1 0000000100
QEl 1 0 0 1 0 0 1 0 0 0 0010000000
QE2 0 1 0 1 0 0 0 1 0 0 0000001000
PL1 0 0 1 1 0 0 1 0 0 0 0001000000
PL2 0 1 0 1 0 1 0 0 0 0 0000010000
DIR 0 1 0 1 1 0 1 0 0 0 0000100000

	1 Introduction
	2 Background
	2.1 RBAC
	2.2 Mutual Exclusive Role in RBAC
	2.3 Neural Network

	3 RBAC Using Neural Network
	3.1 System Architecture
	3.2 Non-mutual Exclusive Role Case
	3.3 Mutual Exclusive Role Case

	4 Evaluation
	5 Conclusion and Future Works
	References
	Appendix

